Н.Ю. Анисимова,

к.б.н.,старший научный сотрудник лаборатории клеточного иммунитета Российского онкологического научного центра им. Н.Н. Блохина РАМН

Ю.М. Должикова,

аспирант лаборатории клеточного иммунитета Российского онкологического научного центра им. Н.Н. Блохина РАМН

Д.В. Кокушков,

к.м.н., доцент кафедры клинической иммунологии и аллергологии Первого МГМУ им. И.М. Сеченова

Т.В. Борисова,

аспирант кафедры клинической иммунологии и аллергологии ММГУ им. И.М.Сеченова

И.О. Чикилева,

к.б.н., старший научный сотрудник лаборатории клеточного иммунитета Российского онкологического научного центра им. Н.Н. Блохина РАМН

С.И. Сокуренко,

д.м.н., профессор кафедры клинической иммунологии и аллергологии МГМУ им. И.М. Сеченова

М.В. Киселевский,

д.м.н., профессор, сотрудник Российского онкологического научного центра им. Н.Н. Блохина РАМН

А.В. Караулов,

д.м.н., член-корр. РАМН, профессор, зав. кафедрой клинической иммунологии и аллергологии МГМУ им. И.М. Сеченова

N. Yu. Anisimova.

PhD, senior research fellow of the laboratory of cellular immunity of the Russian cancer research centre named after N.N. Blokhin of RAMS

Yu.M. Dolzhikova.

post-graduate student of the laboratory of cellular immunity of Russian cancer research centre named after N.N. Blokhin of RAMS

D.V. Kokushkov,

PhD, lecturer of the chair of clinical immunology and allergology of the First MSMU named after I.M. Sechenov

T.V. Borisova,

post-graduate student of the chair of clinical immunology and allergology of the First MSMU named after I.M. Sechenov

I.O. Chikileva,

PhD, senior research fellow of the laboratory of cellular immunity of the Russian cancer research centre named after N.N. Blokhin of RAMS

S.I. Sokurenko,

MD, prof. of the chair of clinical immunology and allergology of the First MSMU named after I.M. Sechenov

M.V. Kiselevsky,

MD, prof. of the Russian cancer research centre named after N.N. Blokhin of RAMS

A.V. Karaulov,

MD, corresp. member of RAMS, prof., head of the chair of clinical immunology and allergology of the First MSMU named after I.M. Sechenov

ОСОБЕННОСТИ ЦИТОКИНОВОГО ПРОФИЛЯ У БОЛЬНЫХ БРОНХИАЛЬНОЙ АСТМОЙ В СТАДИИ ОБОСТРЕНИЯ

THE SPECIFIC FEATURES OF CYTOKINE PROFILE OF PATIENTS WITH BRONCHIAL ASTHMA IN AN ACUTE STAGE

КОНТАКТНАЯ ИНФОРМАЦИЯ:

Александр Викторович Караулов, заведующий кафедрой клинической иммунологии и аллергологии **Адрес:** 119435, г. Москва, ул. Б. Пироговская д. 2, к. 6

Телефон: 8 (495) 118-50-47

Аннотация. Цель работы — изучение особенностей стафилококковой микрофлоры у спортсменов различных специализаций.

Annotation. The aim of this research is to investigate the features of staphylococcal microfl ora of sportsmen of diff erent specializations.

Ключевые слова. Бронхиальная астма, цитокины, сывороточная концентрация, спонтанная и индуцированная продукция.

Key words. Bronchial asthma, the serum concentration, spontaneous and induced production.

ШИТОКИНОВЫЙ ПРОФИЛЬ ПРИ БРОНХИАЛЬНОЙ АСТМЕ

Цель работы — изучение сывороточных концентраций, а также спонтанной и индуцированной продукции ИЛ-8, ИЛ-6, ИЛ-4 и ИЛ-17 у больных бронхиальной астмой в стадии обострения.

Концентрация циокинов в крови, а также их спонтанная и индуцированная продукция оценивались с использованием иммуноферментного анализа.

Полученные в исследовании данные подтверждают значимость Th2-пути в патогенезе бронхиальной астмы. Об этом свидетельствуют не только высокие уровни противовоспалительного цитокина ИЛ-4 в крови, но и его повышенная спонтанная и индуцированная продукция у больных бронхиальной астмой в стадии обострения. Наряду с этим установленное повышение сывороточных концентраций и продукции лейкоцитами крови ИЛ-6 свидетельствуют о важной роли этого противовоспалительного цитокина при обострении бронхиальной астмы.

Таким образом, у пациентов с бронхиальной астмой в период обострения наряду с ИЛ-4 достоверно повышается содержание в крови и продукция лейкоцитами ИЛ-6, что позволяет рассматривать его в качестве маркера воспалительной реакции у данной категории больных.

ВВЕДЕНИЕ

Бронхиальная астма часто сочетается с хроническим воспалением дыхательных путей. На этом фоне, как правило, отмечаются выраженная эозинофилия и лимфоидная инфильтрация слизистых оболочек. Лимфоциты и продуцируемые ими цитокины, прежде всего ИЛ-4 и ИЛ-13, играют важную роль в патогенезе астмы [1, 2]. При этом накопившиеся к настоящему времени литературные данные указывают на минимальную продукцию Th1-цитокинов [3]. Однако исследования последних лет показали, что CD^{4+} Т-лимфоциты, продуцирующие ИЛ-17 (Th17), также вовлечены в антигениндуцированные воспалительные реакции воздухоносных путей. ИЛ-17, очевидно, является хемотаксическим фактором и способствует рекрутированию нейтрофилов в слизистую дыхательных путей. При этом вызванная ИЛ-17 нейтрофильная инфильтрация характеризуется резистентностью к стероидам [4].

Экспрессия ИЛ-17, согласно ранее опубликованным данным, четко коррелирует с тяжестью состояния больного астмой [5—7]. Этот цитокин также способен индуцировать продукцию ряда медиаторов, участвующих в гранулопоэзе, и непосредственно стимулировать гладкую мускулатуру, фибробласты и эндотелиоциты бронхов [8]. ИЛ-17 может также усиливать эффекты Th2-лимфоцитов [9].

Эпителиальные клетки легких, формально не являсь частью иммунной системы, также способны продуцировать цитокины, прежде всего ИЛ-6 [10],

секреция которого увеличивается во время приступов бронхиальной астмы [11]. IL-6 относится к плейотропным цитокинам вместе с ФНО и ИЛ-1β, являясь провоспалительным медиатором [12]. Недавние исследования показали, что IL-6 имеет определяющее значение в развитии и направленности иммунного ответа, в частности, в дифференцировке CD4⁺T-клеток. IL-6 может индуцировать Th2 — дифференцировку CD4⁺ T-лимфоцитов [13] и модулировать интенсивность иммунного ответа, угнетая Treg [14].

Последние работы показали, что ИЛ-6 вместе с TGF- β способствует генерации Th17 клеток [15—16] и, таким образом, является ключевым фактором в дифференцировке $CD4^+$ Т-лимфоцитов, формировании супрессорных Treg или воспалительных Th17 клеток [17].

Существенное значение в воспалительном процессе при астме имеют также различные хемокины, участвующие в рекрутировании нейтрофилов в слизистую бронхов.

Итак, опубликованные в последние годы данные свидетельствуют о том, что участие цитокинов в патогенезе бронхиальной астмы не ограничивается только противовоспалительными медиаторами.

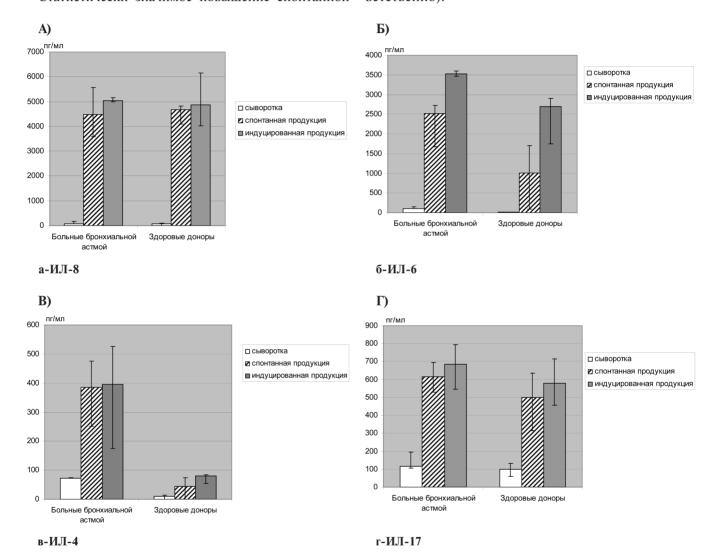
МАТЕРИАЛЫ И МЕТОДЫ

Для определения цитокинового профиля использовали образцы сыворотки крови больных бронхиальной астмой (n = 15) и здоровых доноров (n = 15).

Определение спонтанной и стимулированной продукции цитокинов клетками крови проводили с использованием наборов реагентов «Цитокин-Стимул-Бест» («Вектор Бест», РФ). В соответствии с инструкцией цельную кровь разводили 5 раз, одну часть инкубировали в культуральной среде без добавок (спонтанная продукция цитокинов), а другую — в среде с комплексным митогеном — фитогемагтлютинин, конканавалин А и липополисахарид (индуцированная продукция цитокинов). Культивирование проводили в $\mathrm{CO_2}$ -инкубаторе при 37 °C и 4,5% $\mathrm{CO_2}$ в течение 24 ч при встряхивании. Затем образцы центрифугировали 10 мин при 3000 об./мин и отбирали супернатант. Полученные супернатанты и сыворотки хранили при температуре -70 °C.

Определение концентрации цитокинов ИЛ-8, ИЛ-6, ИЛ-4 и ИЛ-17 осуществляли с использованием наборов реагентов для ИФА фирмы «Вектор Бест» в соответствии с инструкцией производителя.

Статистический анализ производили с использованием непараметрических критериев, определяя медиану и размах данных в группах больных и здоровых доноров. Сравнение показателей 2 групп проводили, используя U-критерий Манна — Уитни. Достоверными считали различия показателей концентрации цитокинов при p < 0.05.


РЕЗУЛЬТАТЫ

В крови больных бронхиальной астмой на фоне обострения достоверно повышается содержание ИЛ-6 и ИЛ-4 по сравнению со здоровыми донорами (р = 0,011 и 0,038 соответственно) (рис.). Концентрация ИЛ-17 хотя и имела очевидную тенденцию к увеличению в сыворотке пациентов с астмой, однако достоверно не отличалась от таковой у доноров (P = 0,197). Уровень ИЛ-8 в крови был сходным в обеих группах (P = 0,305).

Статистически значимое повышение спонтанной

продукции у больных астмой было отмечено только в случае ИЛ-4 (p=0,016). Также следует отметить явную тенденцию к увеличению секреции ИЛ-6 лейкоцитами крови (p=0,071).

Индуцированная продукция ИЛ-4 и ИЛ-6 лей-коцитами крови пациентов с бронхиальной астмой значительно (p=0.043 и 0.049 соответственно) превышала данные показатели для здоровых доноров. В ответ на действие митогенов уровень секреции ИЛ-8 и ИЛ-17 в среднем не отличался в 2 рассматриваемых группах (p=0.121 и 0.197 соответственно).

Сывороточные концентрации, спонтанная и индуцированная продукция цитокинов у бронхиальной астмой и здоровых доноров

ОБСУЖДЕНИЕ

Полученные в исследовании данные подтверждают значимость Th2-пути в патогенезе бронхиальной астмы. Об этом свидетельствует не только высокий уровень противовоспалительного цитокина ИЛ-4 в крови, но и его повышенная спонтанная и индуцированная продукция у больных бронхиальной астмой в стадии обострения. Наряду с этим установленное по-

вышение сывороточных концентраций и продукции лейкоцитами крови ИЛ-6 свидетельствует о важной роли этого провоспалительного цитокина при обострении бронхиальной астмы.

Целесообразность контроля за уровнем и продукцией этого цитокина обусловлена разнонаправленностью вызываемых им местных и системных реакций. В частности, ИЛ-6 может стимулировать и поддерживать врожденный иммунный ответ за счет активации

макрофагов и дендритных клеток. Более того, этот цитокин продуцируется не только гемопоэтическими клетками, но и фибробластами, эндотелиомитами и эпителием, а следовательно, он способен вызывать развитие воспалительной реакции и в отсутствие иммунокомпетентных клеток [12].

Представленные материалы и накопившиеся литературные сведения о роли ИЛ-6 при бронхиальной астме позволяют предположить, что данный цитокин может рассматриваться не только как индикатор системного воспаления, но и как фактор прогноза и течения заболевания. Весьма вероятно, что ИЛ-6 может рассматриваться в качестве биомишени для создания таргентых препаратов для лечения обострений астмы и астматического статуса. Это направление представляется перспективным, поскольку, как показали результаты клинических испытаний, ингибирование Th2-цитокинов при бронхиальной астме оказалось неэффективным [9].

Выявленное в данной работе отсутствие изменений содержания в крови и продукции ИЛ-8 и ИЛ-17 не исключает их участия в патогенезе бронхиальной астмы. Однако, очевидно, их роль в значительной степени ограничивается местными реакциями. Об этом говорят данные других авторов, показавших, что роль этих медиаторов главным образом связана с локальными процессами лейкоцитарной инфильтрации и воспаления слизистой дыхательных путей, а высокие концентрации данных цитокинов определялись в основном в мокроте больных бронхиальной астмой.

выводы

У пациентов с бронхиальной астмой в период обострения наряду с ИЛ-4 достоверно повышается содержание в крови и продукция лейкоцитами ИЛ-6, что позволяет рассматривать его в качестве маркера воспалительной реакции у данной категории больных.

Список литературы

- Busse W.W., Lemanske R.F., Asthma. N. Engl. J Med. 2001; 44: 350–362; Umetsu DT, McIntire JJ, Akbari O, Macaubas C, DeKruyff RH. Asthma: an epidemic of dysregulated immunity. Nat Immunol. 2002;3:715–720.
- 2. *Herrick C.A.*, *Bottomly K.* To respond or not to respond: T cells in allergic asthma. Nat. Rev. Immunol. 2003;3:405–412.
- 3. *Georas S.N.*, *Guo J.*, *De Fanis U.*, *Casolaro V.* T-helper cell type-2 regulation in allergic disease. Eur. Respir. J. 2005;26 (6):1119–1137.

- 4. McKinley L., Alcorn J.F., Peterson A., Dupont R.B., Kapadia S., Logar A., Henry A., Irvin C.G., Piganelli J.D., Ray A., Kolls J.K. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol. 2008;181:4089–4097.
- Molet S., Hamid Q., Davoine F., Nutku E., Taha R., Pagé N., Olivenstein R, Elias J., Chakir J. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J. Allergy Clin. Immunol. 2001;108: 430–438
- Jatakanon A., Uasuf C., Maziak W., Lim S., Chung K.F., Barnes P.J. Neutrophilic inflammation in severe persistent asthma. Am. J. Respir. Crit. Care Med. 1999;160:1532– 1539
- Louis R., Lau L.C., Bron A.O., Roldaan A.C., Radermecker M., Djukanović R. The relationship between airways inflammation and asthma severity. Am J. Respir. Crit. Care Med. 2000; 161:9–16.
- 8. *Iwakura Y., Nakae S., Saijo S., Ishigame H.* The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol. Rev. 2008;266:55–79.
- 9. *Nakajima H. and Hirose K.* Role of IL-23 and Th17 Cells in Airway Inflammation in Asthma. Netw. 2010 February; 10(1): 1–4.
- 10. *King C., Brennan S., Thompson P.J., Stewart G.A.* Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J. Immunol. 1998;161(7):3645–3651.
- 11. *Kicic A., Sutanto E.N., Stevens P.T., Knight D.A., Stick S.M.* Intrinsic biochemical and functional differences in bronchial epithelial cells of children with asthma. Am. J. Resp. and Critical Care Med. 2006;174(10):1110–1118.
- 12. *Kamimura D., Ishihara K., Hirano T.* IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev. Physiol Biochem.and Pharmacol. 2003;149:1–38
- 13. *Dienz O., Rincon M.* The effects of IL-6 on CD4 T cell responses. Clin. Immunol. 2009;130(1):27–33.
- 14. *Pasare C., Medzhitov R.* Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299(5609):1033–1036.
- 15. Mangan P.R., Harrington L.E., O'Quinn D.B., Helms W.S., Bullard D.C., et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441(7090):231–234.
- Veldhoen M., Hocking R.J., Atkins C.J., Locksley R.M., Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–189.
- 17. Wendy A., Neveu1, Jenna L., Allard,2 Danielle M Raymond, 2 Lorraine M Bourassa,2 Stephanie M Burns,2 Janice Y Bunn,3 Charles G Irvin,2 David A Kaminsky,2 and Mercedes Rincon Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function Respir Res. 2010; 11(1): 11–28