https://doi.org/10.47093/2218-7332.2022.426.08.S

SUPPLEMENTARY MATERIALS / ДОПОЛНИТЕЛЬНЫЕ MATEРИАЛЫ

For citation: Suvorov A.Yu., Bulanov N.M., Shvedova A.N., Tao E.A., Butnaru D.V., Nadinskaia M.Yu., Zaikin A.A. Supplementary materials. Statistical hypothesis testing: general approach in medical research. Sechenov Medical Journal. 2022; 13(1): 4–13. https://doi.org/10.47093/2218-7332.2022.426.08.S

Table S1. Selected effect size calculation methods for assessment of the difference between statistics					
Name	Description	Standardized method	Formula		
Mean	Arithmetic mean value	No	μ		
Delta of means	Delta (difference) between two means	No	$\Delta = \mu_1 - \mu_2$		
Ratio of means	Ratio of means, ROM. Mean of group 1 divided by mean of group 2	Yes	$RoM = \mu_1 / \mu_2$		
Cohen's d (standardized mean difference)	Difference of two means divided by pooled SD	Yes	$d = (\mu_1 - \mu_2) / s_{poole}$		
Cohen's d for paired samples	Cohen's d value adjustment taking into account correlation coefficient	Yes	$d = d' / \sqrt{(1-r)}$		
Glass` Δ	Difference of two means divided by SD of the second group	Yes	$\Delta = (\mu_1 - \mu_2) / s_2$		
Risk difference	Risk difference, RD. Difference between effect proportions (p_1, p_2) in two groups	Yes	$RD = p_1 - p_2$		

Note: μ – arithmetic mean; μ, – arithmetic mean in group i; s, – standard deviation in group i; p, – outcome proportion in group i; r – correlation coefficient.

Table S2. Selected effect size calculation methods for assessment of the connections between numeric variables' distributions

Name	Description	Description Formula			
Pearson correlation coefficient	Correlation of two variables	$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$			
Coefficient of determination	Proportion of variation in the dependent variable predictable from the independent one	$R^2 = r^2$			

Note: x_i , y_i – parameters values x_i , y_i for a patient i; n – a total number of patients in a group; r_{xy} – correlation coefficient between variables x_i , y_i ; R^2 – coefficient of determination; \bar{x}_i , \bar{y}_i – x_i and y_i mean values.

Table S3. 2x2 contingency table for risk estimation					
	Disease	No disease	Total number		
Risk factor	$D_{_{N}}$	H_{N}	$D_N + H_N = T_N$		
No risk factor	$D_{\scriptscriptstyle E}$	$H_{\scriptscriptstyle E}$	$D_{\scriptscriptstyle E}$ + $H_{\scriptscriptstyle E}$ = $T_{\scriptscriptstyle E}$		

Примечание: $D_{_N}$ – количество пациентов с фактором риска среди больных; $D_{_E}$ – количество пациентов без фактора риска среди больных; $H_{_N}$ – количество пациентов с фактором риска среди здоровых; $H_{_E}$ – количество пациентов без фактора риска среди здоровых.

Note: D_N – number of subjects with disease who have a risk factor; D_E – number of subjects with disease without a risk factor; H_N – number of subjects without disease who have a risk factor; H_E – number of subjects without disease who do not have a risk factor.

Table S4. Selected standardized effect size calculation methods assessing connections between categorical variables				
Name	Name Description			
Cohen's h	Measure of distance between two proportions or probabilities	$h = 2 \times (\arcsin \sqrt{p_1} - \arcsin \sqrt{p_2})$		
Odds ratio	Odds ratio, OR. Shows the probability (N / 1) of outcome in exposed group compared to the probability in the not exposed group	$OR = (D_E / H_E) / (D_N / H_N)$		
Relative risk	Relative risk (risk ratio), RR. Shows outcomes' ratio during a certain period of time in exposed group compared to the group without exposure	$RR = (D_E / T_E) / (D_N / T_N)$		