Comparative analysis of oncolytic potential of vesicular stomatitis virus serotypes Indiana and New Jersey in cancer cell lines
https://doi.org/10.47093/2218-7332.2023.946.14
摘要
Aim. Compare the lytic efficiency and the kinetics of accumulation of vesicular stomatitis virus serotypes Indiana (VSV-IND) and New Jersey (VSV-NJ) on cell lines of mouse melanoma B16F10, human hepatocellular carcinoma HepG2 and human mammary adenocarcinoma MCF7.
Materials and methods. The viability of mouse melanoma B16F10, human hepatocellular carcinoma HepG2 and human mammary adenocarcinoma MCF7 cell lines infected with VSV-IND and VSV-NJ viruses at different multiplicity of infection (10 MOI; 1 MOI; 0.1 MOI) was assessed after 24, 48 and 72 hours, and the half maximal inhibitory concentration (IC50) values were measured using the methyl tetrazolium test. The relationship with virus accumulation in cell culture was determined using reverse transcription – quantitative polymerase chain reaction; 50% tissue culture infectious dose (TCID50) of VSV-IND and VSV-NJ for B16F10, HepG2, MCF7 were calculated using the Reed-Muench method.
Results. The most susceptible cell line for both viruses was B16F10: cell viability 72 hours after infection at 10 MOI was only 10.4% and 5.7% for VSV-IND and VSV-NJ, respectively. HepG2 cell viability at 72 hours post-infection at 10 MOI was 10.8% and 9.8% for VSV-IND and VSV-NJ, and for MCF7 adenocarcinoma it was 46.6% and 36.2%, respectively. Moreover, only in the B16F10 culture was a positive statistically significant correlation of medium strength established between the inhibition of cell viability and the accumulation of viral RNA: for VSV-IND r = 0.601 (p < 0.05); for VSV-NJ r = 0.668 (p < 0.05). HepG2 and MCF7 showed no significant correlation.
Conclusion. The research results indicate the potential of using oncolytic viruses of the VSV-IND and VSV-NJ as a platform for the development of new recombinant viruses for virotherapy of solid tumors in combination with other types of treatment.
关于作者
A. Isaeva俄罗斯联邦
N. Porozova
俄罗斯联邦
E. Idota
俄罗斯联邦
S. Volodina
俄罗斯联邦
A. Lukashev
俄罗斯联邦
A. Malogolovkin
俄罗斯联邦
参考
1. Zainutdinov S.S., Kochneva G.V., Netesov S.V., et al. Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virother. 2019 Jul 12; 8: 9–26. https://doi.org/10.2147/OV.S176523. PMID: 31372363
2. Бабаева Ф.Э., Липатова А.В., Кочетков Д.В. и др. Исследование репродукции онколитических вирусов в органных культурах лимфоидных опухолей человека. Онкогематология 2019; 14(4): 84–89. https://doi.org/10.17650/1818-8346-2019-14-4-84-89
3. Shalhout S.Z., Miller D.M., Emerick K.S., Kaufman H.L. Therapy with oncolytic viruses: progress and challenges. Nat Rev Clin Oncol. 2023 Mar; 20(3): 160–177. https://doi.org/10.1038/s41571-022-00719-w. Epub 2023 Jan 11. PMID: 36631681
4. Jiang B., Huang D., He W., et al. Inhibition of glioma using a novel non-neurotoxic vesicular stomatitis virus. Neurosurg Focus. 2021 Feb; 50(2): E9. https://doi.org/10.3171/2020.11.FOCUS20839. PMID: 33524950
5. Kelly E., Russell S.J. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007 Apr; 15(4): 651–659. https://doi.org/10.1038/sj.mt.6300108. Epub 2007 Feb 13. PMID: 17299401
6. Hastie E., Grdzelishvili V.Z. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol. 2012 Dec; 93(Pt 12): 2529–2545. https://doi.org/10.1099/vir.0.046672-0. Epub 2012 Oct 10. PMID: 23052398
7. Pelzel-McCluskey A.M. Vesicular Stomatitis Virus. Vet Clin North Am Equine Pract. 2023 Apr; 39(1): 147–155. https://doi.org/10.1016/j.cveq.2022.11.004. Epub 2023 Feb 1. PMID: 36737291
8. Bishnoi S., Tiwari R., Gupta S., et al. Oncotargeting by Vesicular Stomatitis Virus (VSV): advances in cancer therapy. Viruses. 2018 Feb 23; 10(2): 90. https://doi.org/10.3390/v10020090. PMID: 29473868
9. Bressy C., Droby G.N., Maldonado B.D., et al. Cell Cycle Arrest in G2/M phase enhances replication of interferon-sensitive cytoplasmic RNA viruses via inhibition of antiviral gene expression. J Virol. 2019 Feb 5; 93(4): e01885-18. https://doi.org/10.1128/JVI.01885-18. PMID: 30487274
10. Koyama A.H. Induction of apoptotic DNA fragmentation by the infection of vesicular stomatitis virus. Virus Res. 1995 Aug; 37(3): 285–290. https://doi.org/10.1016/0168-1702(95)00026-m. PMID: 8533463
11. Rogers C., Fernandes-Alnemri T., Mayes L., et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017 Jan 3; 8: 14128. https://doi.org/10.1038/ncomms14128. PMID: 28045099
12. Makielski K.M., Sarver A.L., Henson M.S, et al. Neoadjuvant systemic oncolytic vesicular stomatitis virus is safe and may enhance long-term survivorship in dogs with naturally occurring osteosarcoma. Molecular Therapy: Oncolytics 2023 December; 31: 1–12. https://doi.org/10.1016/j.omto.2023.100736. Epub 2023 October 13.
13. Riepler L., Frommelt L.S., Wilmschen-Tober S., et al. Therapeutic efficacy of a VSV-GP-based human papilloma virus vaccine in a murine cancer model. J Mol Biol. 2023 Jul 1; 435(13): 168096. https://doi.org/10.1016/j.jmb.2023.168096. Epub 2023 Apr 20. PMID: 37086948
14. Askari F.S., Mohebbi A., Moradi A., Javid N. The role of vesicular stomatitis virus matrix protein in autophagy in the breast cancer. Asian Pac J Cancer Prev. 2021 Jan 1; 22(1): 249–255. https://doi.org/10.31557/APJCP.2021.22.1.249. PMID: 33507706
15. Kimpel J., Urbiola C., Koske I., et al. The oncolytic virus VSV-GP is effective against malignant melanoma. Viruses. 2018 Mar 2; 10(3): 108. https://doi.org/10.3390/v10030108. PMID: 29498639
16. Nagalo B.M., Breton C.A., Zhou Y., et al. Oncolytic virus with attributes of vesicular stomatitis virus and Measles virus in hepatobiliary and pancreatic cancers. Mol Ther Oncolytics. 2020 Sep 25; 18: 546–555. https://doi.org/10.1016/j.omto.2020.08.007. Epub 2020 Aug 19. PMID: 32839735
17. Tang S., Shi L., Luker B.T., et al. Modulation of the tumor microenvironment by armed vesicular stomatitis virus in a syngeneic pancreatic cancer model. Virol J. 2022 Feb 23; 19(1): 32. https://doi.org/10.1186/s12985-022-01757-7. PMID: 35197076
18. Kim T.E., Puckett S., Zhang K., et al. Diversity in responses to oncolytic Lassa-vesicular stomatitis virus in patient-derived glioblastoma cells. Mol Ther Oncolytics. 2021 Jun 12; 22: 232–244. https://doi.org/10.1016/j.omto.2021.06.003. PMID: 34514102
19. Martinez I., Wertz G.W. Biological differences between vesicular stomatitis virus Indiana and New Jersey serotype glycoproteins: identification of amino acid residues modulating pH-dependent infectivity. J Virol. 2005 Mar; 79(6): 3578–3585. https://doi.org/10.1128/JVI.79.6.3578-3585.2005. PMID: 15731252
20. Velazquez-Salinas L., Medina G.N., Valdez F., et al. Exploring the molecular basis of vesicular stomatitis virus pathogenesis in swine: insights from expression profiling of primary macrophages infected with M51R mutant virus. Pathogens. 2023; 12(7): 896. https://doi.org/10.3390/pathogens12070896. PMID: 37513744
21. Velazquez-Salinas L., Canter J.A., Zhu J.J., Rodriguez L.L. Molecular pathogenesis and immune evasion of vesicular stomatitis New Jersey virus inferred from genes expression changes in infected porcine macrophages. Pathogens. 2021 Sep 3; 10(9): 1134. https://doi.org/10.3390/pathogens10091134. PMID: 34578166
22. Das S.C., Pattnaik A.K. Phosphorylation of vesicular stomatitis virus phosphoprotein P is indispensable for virus growth. J Virol. 2004 Jun; 78(12): 6420–6430. https://doi.org/10.1128/JVI.78.12.6420-6430.2004. PMID: 15163735
23. Blair G.E., Dixon S.C., Griffiths S.A., Zajdel M.E. Restricted replication of human adenovirus type 5 in mouse cell lines. Virus Res. 1989 Dec; 14(4): 339-346. https://doi.org/10.1016/0168-1702(89)90026-9. PMID: 2560294
24. Zhang L., Hedjran F., Larson C., et al. A novel immunocompetent murine model for replicating oncolytic adenoviral therapy. Cancer Gene Ther. 2015 Jan; 22(1): 17–22. https://doi.org/10.1038/cgt.2014.64. Epub 2014 Dec 19. PMID: 25525035
25. Stanford M.M., Shaban M., Barrett J.W., et al. Myxoma virus oncolysis of primary and metastatic B16F10 mouse tumors in vivo. Mol Ther. 2008 Jan; 16(1): 52–59. https://doi.org/10.1038/sj.mt.6300348. Epub 2007 Nov 13. PMID: 17998900
26. Rahman M.M., McFadden G. Oncolytic virotherapy with Myxoma virus. J Clin Med. 2020 Jan 8; 9(1): 171. https://doi.org/10.3390/jcm9010171. PMID: 31936317
27. Balachandran S., Barber G.N. Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life. 2000 Aug; 50(2): 135–138. https://doi.org/10.1080/713803696. PMID: 11185959
28. Munis A.M., Bentley E.M., Takeuchi Y. A tool with many applications: vesicular stomatitis virus in research and medicine. Expert Opin Biol Ther. 2020 Oct; 20(10): 1187–1201. https://doi.org/10.1080/14712598.2020.1787981. Epub 2020 Jul 9. PMID: 32602788
29. Zhang Y., Nagalo B.M. Immunovirotherapy based on recombinant vesicular stomatitis virus: Where are we? Front Immunol. 2022 Jun 28; 13: 898631. https://doi.org/10.3389/fimmu.2022.898631. PMID: 35837384
30. Leveille S., Goulet M.L., Lichty B.D., Hiscott J. Vesicular stomatitis virus oncolytic treatment interferes with tumor-associated dendritic cell functions and abrogates tumor antigen presentation. J Virol. 2011 Dec; 85(23): 12160–12169. https://doi.org/10.1128/JVI.05703-11. PMID: 21917977
31. Gebremeskel S., Nelson A., Walker B., et al. Natural killer T cell immunotherapy combined with oncolytic vesicular stomatitis virus or reovirus treatments differentially increases survival in mouse models of ovarian and breast cancer metastasis. J Immunother Cancer. 2021 Mar; 9(3): e002096. https://doi.org/10.1136/jitc-2020-002096. PMID: 33722907