Влияние спринтерских тренировок на здоровье костей: обзор литературы
https://doi.org/10.47093/2218-7332.2023.14.4.4-16
Аннотация
Влияние спринтерских тренировок (CT) на здоровье костей изучено недостаточно, в особенности воздействие на минеральную плотность костной ткани (МПК) и структуру костей.
Цель. Изучить взаимосвязь CT и здоровья костей среди профессиональных спортсменов, тренирующихся с разной интенсивностью, и спортсменов-любителей разного возраста.
Материалы и методы. Поиск по базам данных PubMed, Embase и Pedro проводился с января 2009 по август 2023 г. Были получены полные тексты всех потенциально релевантных исследований и оценены по критериям включения тремя независимыми рецензентами.
Результаты. Комплексный обзор восьми исследований указывает на положительное влияние CT на здоровье костей. У спринтеров наблюдается более высокая кортикальная и трабекулярная МПК большеберцовой кости, чем в контрольной группе, с возрастным снижением МПК. Спринтеры демонстрируют значительно более высокую МПК, лучший результат в тесте прыжка со встречным движением и большую силу хвата по сравнению с бегунами на длинные дистанции. Эти преимущества СТ были выявлены в разных возрастных группах, включая спортсменов старшего возраста, у которых возрастные изменения МПК средней части большеберцовой кости были минимальными. СТ также связаны с увеличением на 21% индекса напряжения-деформации большеберцовой кости, что указывает на устойчивую прочность костей и снижение риска переломов у пожилых людей за счет подавления микро-РНК, связанных с переломами.
Заключение. СТ значительно укрепляют здоровье костей, особенно за счет повышения минеральной плотности кости и улучшения микроархитектуры кости. Включение СТ в программу физической подготовки может принести пользу как спортсменам, так и пожилым людям. Дальнейшие исследования необходимы для понимания механизмов и разработки оптимальных для здоровья костей режимов тренировок.
Об авторах
С. БалиИндия
Бали Севека - физиотерапевт, кафедра физической и реабилитационной медицины.
Мадхья Марг, сектор 12, Чандигарх, 160012
С. Панда
Индия
Панда Сугата - доцент кафедры физиотерапии Университета Чандигарха.
Гаруан, Мохали, Пенджаб, 140413
Тел.: 08116090083
А. Сингх
Индия
Сингх Амарджит - профессор, заведующий кафедрой общественной медицины и Школы общественного здравоохранения.
Мадхья Марг, сектор 12, Чандигарх, 160012
С. Сингх
Индия
Сингх Соня - доцент, заведующая кафедрой физиотерапии.
Патиала, Пенджаб, 147002
Список литературы
1. Faude O., Koch T., Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012; 30(7): 625-631. https://doi.org/10.1080/02640414.2012.665940. Epub 2012 Mar 6. PMID: 22394328
2. Nowak A., Straburzynska-Lupa A., Kusy K., et al. Bone mineral density and bone turnover in male masters athletes aged 40-64. Aging Male. 2010 Jun; 13(2): 133-141. https://doi.org/10.3109/13685531003657776. PMID: 20210695
3. Gast U., Belavy D.L., Armbrecht G., et al. Bone density and neuromuscular function in older competitive athletes depend on running distance. Osteoporos Int. 2013 Jul; 24(7): 2033-2042. https://doi.org/10.1007/s00198-012-2234-0. PMID: 23242430
4. Welch J.M., Rosen C.J. Older women track and field athletes have enhanced calcaneal stiffness. Osteoporos Int. 2005 Aug; 16(8): 871-878. https://doi.org/10.1007/S00198-004-1769-0. PMID: 15592922
5. Korhonen M.T., Heinonen A., Siekkinen J., et al. Bone density, structure and strength, and their determinants in aging sprint athletes. Med Sci Sports Exerc. 2012 Dec; 44(12): 2340-2349. https://doi.org/10.1249/MSS.0b013e318267c954. PMID: 22776884
6. Rantalainen T., Duckham R.L., Suominen H., et al. Tibial and fibular mid-shaft bone traits in young and older sprinters and non-athletic men. Calcif Tissue Int. 2014 Aug; 95(2): 132-140. https://doi.org/10.1007/s00223-014-9881-4. PMID: 24925060
7. Suominen T.H., Korhonen M.T., Alen, M., et al. Effects of a 20week high-intensity strength and sprint training program on tibial bone structure and strength in middle-aged and older male sprint athletes: a randomized controlled trial. Osteoporos Int. 2017 Sep; 28(9): 2663-2673. https://doi.org/10.1007/s00198-017-4107-z. PMID: 28623425
8. Wilks D.C., Winwood K., Gilliver S.F., et al. Age-dependency in bone mass and geometry: a pQCT study on male and female master sprinters, middle and long distance runners, race-walkers and sedentary people. J Musculoskelet Neuronal Interact. 2009 OctDec; 9(4): 236-246. PMID: 19949281
9. Wilks D.C., Gilliver S.F., Rittweger J. Forearm and tibial bone measures of distance- and sprint-trained master cyclists. Med Sci Sports Exerc. 2009 Mar; 41(3): 566-573. https://doi.org/10.1249/MSS.0B013E31818A0EC8. PMID: 19204595
10. Wilks D.C., Winwood K., Gilliver S.F., et al. Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: A pQCT study. Bone. 2009 Jul; 45(1): 91-97. https://doi.org/10.1016/j.bone.2009.03.660. PMID: 19332164; PMCID: PMC2832729
11. Piasecki J., McPhee J.S., Hannam K., et al. Hip and spine bone mineral density are greater in master sprinters, but not endurance runners compared with non-athletic controls. Arch Osteoporos. 2018 Jul; 13(1): 72. https://doi.org/10.1007/S11657-018-0486-9. PMID: 29971503; PMCID: PMC6028830
12. Heinonen A., Oja P., Kannus P., et al. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone. 1995 Sep; 17(3): 197-203. https://doi.org/10.1016/8756-3282(95)00151-3. PMID: 8541131
13. Heinonen A., Sievanen H., Kyrolainen H., et al. Mineral mass, size, and estimated mechanical strength of triple jumpers' lower limb. Bone. 2001 Sep; 29(3): 279-285. https://doi.org/10.1016/S8756-3282(01)00574-9. PMID: 11557373
14. Bennell K.L., Malcolm S.A., Khan K.M., et al. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone. 1997 May; 20(5): 477484. https://doi.org/10.1016/S8756-3282(97)00026-4. PMID: 9145246
15. Rienzi E., Drust B., Reilly T., et al. Investigation of anthropometric and work-rate profiles of elite South American international soccer players. J Sports Med Phys Fitness. 2000 Jun; 40(2): 162169. PMID: 11034438
16. Gomez J.J.H., Marquina V., Gomez Й.ИС On the performance of Usain Bolt in the 100 metre sprint. Eur J Phys. 2013 May; 34(5): 1227-1233. https://doi.org/10.1088/0143-0807/34/5/1227
17. Ross A., Leveritt M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med. 2001; 31(15): 1063-1082. https://doi.org/10.2165/00007256-200131150-00003. PMID: 11735686
18. Talanian J.L., Galloway S.D.R., Heigenhauser G.J.F., et al. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol. (1985) 2007 Apr; 102(4): 1439-1447. https://doi.org/10.1152/jap-plphysiol.01098.2006. PMID: 17170203
19. Trilk J.L., Singhal A., Bigelman K.A., Cureton K.J. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. Eur J Appl Physiol. 2011 Aug; 111(8): 1591-1597. https://doi.org/10.1007/S00421-010-1777-Z. Epub 2010 Dec 29. PMID: 21190036
20. Zamanpour L., Banitalebi E., Amirhosseini S.E. The effect of sprint training and combined aerobic and strength training on some inflammatory markers and insulin resistance in women with diabetes mellitus (T2dm). Iranian Journal of Diabetes and Metabolism. 2016; 15(5): 300-311.
21. Tanaka T., Suga T., Otsuka M., et al. Relationship between the length of the forefoot bones and performance in male sprinters. Scand J Med Sci Sports. 2017 Dec; 27(12): 1673-1680. https://doi.org/10.1111/sms.12857. Epub 2017 Mar 23. PMID: 28207966
22. Sansoni V., Perego S., Vernillo G., et al. Effects of repeated sprints training on fracture risk-associated miRNA. Oncotarget. 2018 Apr; 9(26): 18029-18040. https://doi.org/10.18632/oncotar-get.24707. PMID: 29719588
23. Ireland A., Mittag U., Degens H. et al. Greater maintenance of bone mineral content in male than female athletes and in sprinting and jumping than endurance athletes: a longitudinal study of bone strength in elite masters athletes. Arch Osteoporos. 2020 Dec; 15(1): 87. https://doi.org/10.1007/S11657-020-00757-W. PMID: 32524289. PMCID: PMC7286845
24. Taylor J., Macpherson T., Spears I., Weston M. The effects of repeated-sprint training on field-based fitness measures: a metaanalysis of controlled and non-controlled trials. Sports Medicine. 2015 Jun; 45(6): 881-891. https://doi.org/10.1007/S40279-015-0324-9. PMID: 25790793
25. Burgomaster K.A., Hughes S.C., Heigenhauser G.J., et al. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol. (1985). 2005 Jun; 98(6): 1985-1990. https://doi.org/10.1152/japplphysiol.01095.2004. Epub 2005 Feb 10. PMID: 15705728
26. Tong X., Chen X., Zhang S., et al. The effect of exercise on the prevention of osteoporosis and bone angiogenesis. Biomed Res Int. 2019 Apr; 2019: 8171897. https://doi.org/10.1155/2019/8171897. PMID: 31139653; PMCID: PMC6500645
27. Hannam K., Deere K.C., Hartley A., et al. A novel accelerometer-based method to describe day-to-day exposure to potentially osteogenic vertical impacts in older adults: findings from a multi-cohort study. Osteoporos Int. Mar. 2017; 28(3): 1001-1011. https://doi.org/10.1007/S00198-016-3810-5. Epub 2016 Oct 31. PMID: 27798733; PMCID: PMC5306163
28. Tanaka H., Tarumi T., Rittweger J. Aging and physiological lessons from master athletes. Compr Physiol. 2019 Dec; 10(1): 261296. https://doi.org/10.1002/cphy.c180041. PMID: 31853968
29. Klein-Nulend J., Bacabac R.G., Bakker A.D. Mechanical loading and how it affects bone cells: the role of the osteo-cyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012; 24: 278-291. https://doi.org/10.22203/ecm.v024a20. PMID: 23007912
30. Suominen T.H., Alen M., Tormakangas T., et al. Regular strength and sprint training counteracts bone aging: A 10-year followup in male masters athletes. JBMR Plus. 2021 May; 5(7): e10513. https://doi.org/10.1002/jbm4.10513. PMID: 34258508. PMCID: PMC8260815
31. Aaserud R., Gramvik P., Olsen S.R., Jensen J. Creatine supplementation delays onset of fatigue during repeated bouts of sprint running. Scand J Med Sci Sports. 1998; 8(5, Pt 1): 247-251. https://doi.org/10.1111/j.1600-0838.1998.tb00478.x. PMID: 9809381
32. Amir-Behghadami M., Janati A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg Med J. 2020 Jun; 37(6): 387. https://doi.org/10.1136/emermed-2020-209567. Epub 2020 Apr 5. PMID: 32253195
33. Page M.J., McKenzie J.E., Bossuyt P.M., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar; 29; 372: n71. https://doi.org/10.1136/bmj.n71. PMID: 33782057; PMCID: PMC8005924
34. Cross M.R., Lahti J., Brown S.R., et al. Training at maximal power in resisted sprinting: Optimal load determination methodology and pilot results in team sport athletes. PLoS One. 2018 Apr; 13(4): e0195477. https://doi.org/10.1371/journal.pone.0195477. PMID: 29641589; PMCID: PMC5895020
35. Bachero-Mena B., Gonzalez-Badillo J.J. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass. J Strength Cond Res. 2014 Oct; 28(10): 2954-2960. https://doi.org/10.1519/JSC.0000000000000492. PMID: 24736770
36. Bentley I., Sinclair J.K., Atkins S.J., et al. Effect of velocitybased loading on acceleration kinetics and kinematics during sled towing. J Strength Cond Res. 2021 Apr; 35(4): 1030-1038. https://doi.org/10.1519/JSC.0000000000002850. PMID: 30299389
37. Kawamori N., Newton R.U., Hori N., Nosaka K. Effects of weighted sled towing with heavy versus light load on sprint acceleration ability. J Strength Cond Res. 2014 Oct; 28(10): 27382745. https://doi.org/10.1519/JSC.0b013e3182915ed4. PMID: 23539079
38. Cochrane D.J., Monaghan D. Using sprint velocity decrement to enhance acute sprint performance. J Strength Cond Res. 2021 Feb; 35(2): 442-448. https://doi.org/10.1519/JSC.0000000000002707. PMID: 29927891
39. Zisi M., Stavridis I., Agilara G.O., et al. The acute effects of heavy sled towing on acceleration performance and sprint mechanical and kinematic characteristics. Sports. 2022 May; 10 (5): 77. https://doi.org/10.3390/sports10050077. PMID: 35622486; PMCID: PMC9146810
40. Edwards T., Piggott B., Banyard H.G., et al. The effect of a heavy resisted sled-pull mesocycle on sprint performance in junior Australian football players. J Strength Cond Res. 2023 Feb; 37(2): 388-393. https://doi.org/10.1519/JSC.0000000000004269
41. Bemben D.A., Fetters N.L. The independent and additive effects of exercise training and estrogen on bone metabolism. Journal of Strength and Conditioning Research. 2000; 14(1): 114-120.
42. De Souza M.J., West S.L., Jamal S.A., et al. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008 Jul.; 43(1): 140-148. https://doi.org/10.1016/j.bone.2008.03.013. Epub 2008 Apr 8. PMID: 18486582
43. Xiao C.M., Kang Y., Zhuang Y.C. Effects of elastic resistance band exercise on postural balance, estrogen, bone metabolism index, and muscle strength of perimenopausal period women. J Am Geriatr Soc. 2016 Jun; 64(6): 1368-1370. https://doi.org/10.1111/jgs.14172. PMID: 27321627
44. Gennari L., Merlotti D., Nuti R. Selective estrogen receptor modulator (SERM) for the treatment of osteoporosis in postmenopausal women: focus on lasofoxifene. Clin Interv Aging. 2010 Feb; 5: 19-29. https://doi.org/10.2147/cia.s6083. PMID: 20169039; PMCID: PMC2817938
45. Krum S.A. Direct transcriptional targets of sex steroid hormones in bone. J Cell Biochem. 2011 Feb; 112(2): 401-408. https://doi.org/10.1002/jcb.22970. PMID: 21268060; PMCID: PMC3070194
46. Guerrini M.M., Takayanagi H. The immune system, bone and RANKL. Arch Biochem Biophys. 2014 Nov; 561: 118-123. https://doi.org/10.1016/j.abb.2014.06.003. Epub 2014 Jun 12. PMID: 24929185
47. Gardinier J.D., Mohamed F., Kohn D.H. PTH signaling during exercise contributes to bone adaptation. J Bone Miner Res. 2015 Jun.; 30(6): 1053-1063. https://doi.org/10.1002/jbmr.2432. PMID: 25529455; PMCID: PMC4734644
48. Meckel Y., Nemet D., Bar-Sela S., et al. Hormonal and inflammatory responses to different types of sprint interval training. J Strength Cond Res. 2011 Aug; 25(8): 2161-2169. https://doi.org/10.1519/JSC.0b013e3181dc4571. PMID: 21785293
49. Zhu L., Xu P.C. Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. Biochem Biophys Res Commun. 2013 Mar.; 432(4): 612-617. https://doi.org/10.1016/j.bbrc.2013.02.036. Epub 2013 Feb 21. PMID: 23438432
50. Huang Y., Zheng Y., Jia L., Li W. Long noncoding RNA H19 promotes osteoblast differentiation Via TGF-e1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells. 2015 Dec; 33(12): 3481-3492. https://doi.org/10.1002/stem.2225. Epub 2015 Oct 23. PMID: 26417995
51. Zuo B., Zhu J., Li J., et al. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J Bone Miner Res. 2015 Feb.; 30(2): 330-345. https://doi.org/10.1002/jbmr.2352. PMID: 25195535
52. Yuan Y., Zhang L., Tong X., et al. Mechanical stress regulates bone metabolism through microRNAs. J Cell Physiol. 2017 Jun.; 232(6): 1239-1245. https://doi.org/10.1002/jcp.25688. Epub 2016 Nov 28. PMID: 27861865
53. Sloth M., Sloth D., Overgaard K., Dalgas U. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand J Med Sci Sports. 2013 Dec; 23(6): e341-352. https://doi.org/10.1111/sms.12092. Epub 2013 Jul 25. PMID: 23889316
54. Goodman C.A., Hornberger T.A., Robling A.G. Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms. Bone. 2015 Nov; 80: 24-36. https://doi.org/10.1016/j.bone.2015.04.014. PMID: 26453495; PMCID: PMC4600534
55. Cariati I., Bonanni R., Onorato F., et al. Role of physical activity in bone-muscle crosstalk: biological aspects and clinical implications. J. Funct. Morphol. Kinesiol. 2021 Jun; 6(2): 55. https://doi.org/10.3390/jfmk6020055. PMID: 34205747; PMCID: PMC8293201
56. McKenna M.J., Schmidt T.A., Hargreaves M., et al. Sprint training increases human skeletal muscle Na+-K-ATPase concentration and improves K+ regulation. J Appl Physiol. 1993 Jul; 75(1): 173-180. https://doi.org/10.1152/jappl.1993.75.1.173. PMID: 8397176
57. Atalay M., Seene T., Hanninen O., et al. Skeletal muscle and heart antioxidant defences in response to sprint training. Acta Physiol Scand. 1996 Oct; 158(2): 129-134. https://doi.org/10.1046/j.1365-201X.1996.540305000.x. PMID: 8899059
58. Linossier M.T., Denis C., Dormois D., et al. Ergometric and metabolic adaptation to a 5-s sprint training programme. Eur J Appl Physiol Occup Physiol. 1993; 67(5): 408-414. https://doi.org/10.1007/BF00376456. PMID: 8299612
59. Morales-Alamo D., Calbet J.A. Free radicals and sprint exercise in humans. Free Radic Res. 2014 Jan; 48(1): 30-42. https://doi.org/10.3109/10715762.2013.825043. Epub 2013 Oct 7. PMID: 23879691
60. Esbjornsson M., Norman B., Suchdev S., et al. Greater growth hormone and insulin response in women than in men during repeated bouts of sprint exercise. Acta Physiologica. 2009 Oct; 197(2): 107-115. https://doi.org/10.1111/J.1748-1716.2009.01994.x. Epub 2009 Apr 27. PMID: 19432586
61. Rumpf M.C., Lockie R.G., Cronin J.B., Jalilvand F. Effect of different sprint training methods on sprint performance over various distances: a brief review. J Strength Cond Res. 2016 Jun; 30(6): 1767-1785. https://doi.org/10.1519/JSC.0000000000001245. PMID: 26492101
Дополнительные файлы
|
1. Графический абстракт | |
Тема | ||
Тип | Исследовательские инструменты | |
Посмотреть
(321KB)
|
Метаданные ▾ |
![]() |
2. Таблица 2. Характеристики включенных исследований | |
Тема | ||
Тип | Исследовательские инструменты | |
Скачать
(1005KB)
|
Метаданные ▾ |