Preview

谢切诺夫学报

高级搜索

Specific antitumor activity of anti-CA125 CAR-T lymphocytes against CA125-positive and CA125-negative cells

https://doi.org/10.47093/2218-7332.2024.15.2.36-47

摘要

Aim. To evaluate the antitumor efficacy of our developed drug based on cytotoxic T lymphocytes genetically modified with a chimeric antigen receptor (CAR) specific to the CA125 antigen in relation to both CA125-positive and CA125negative cell cultures.

Materials and methods. We performed an in vitro study on CA125-positive human ovarian cancer cells (OVCAR-3, OVKATE) and CA125 negative cells (breast cancer MCF 7, embryonic kidney HEK293). Cytotoxic effects on tumor cells were evaluated after 0, 4, 8 and 24 hours using the 3’-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Lactate Dehydrogenase (LDH) tests. We also studied the changes in the number of cells “in real time” when exposed to transfected lymphocytes using the RTCA iCELLIgence device (ACEA Biosciences, USA). Lymphokineactivated killer (LAK) cells were used as a specificity control.

Results. The study demonstrated that anti-CA125 CAR-T lymphocytes exhibited a pronounced cytotoxic effect on OVCAR-3 and OVKATE cell cultures, exceeding the effect of LAK by 1.3 times. The cell population in the experimental samples decreased by 70 ± 4%, which exceeded the LAK effect by 9 ±  8.2%. With regard to the MCF-7 cell line, the cytotoxic effect of anti-CA125 CAR-T lymphocytes was minimal as evidenced by a 25.8% decrease in the relative number of live cells in comparison to the LAK cytotoxicity of 68%. Real-time monitoring of cell proliferation and viability proved a high specific cytotoxic effect of anti-CA125 CAR-T lymphocytes against tumor cultures expressing CA-125, while inferior to LAK in cultures not expressing CA125 (MCF-7, HEK293).

Conclusions. The use of anti-CA125 CAR-T lymphocytes against CA125-positive tumor cell lines OVCAR-3 and OVKATE demonstrated a pronounced specific cytotoxic effect exceeding the cytotoxic effect of LAK, which was not achieved against CA125-negative MCF-7 and HEK293 cells.

关于作者

T. Kulinich
Russian Scientific Center of Roentgenoradiology
俄罗斯联邦


Ya. Kiseleva
Russian Scientific Center of Roentgenoradiology
俄罗斯联邦


A. Shishkin
Russian Scientific Center of Roentgenoradiology
俄罗斯联邦


E. Kudinova
Russian Scientific Center of Roentgenoradiology
俄罗斯联邦


O. Knyazeva
Russian Scientific Center of Roentgenoradiology
俄罗斯联邦


R. Ranjit
Рeoples’ Friendship University of Russia; Municipal Clinical Hospital Number 1 of the Moscow City Health Department
俄罗斯联邦


V. Bozhenko
Russian Scientific Center of Roentgenoradiology
俄罗斯联邦


V. Solodky
Russian Scientific Center of Roentgenoradiology
俄罗斯联邦


参考

1. Zhang J., Li M., Feng L., et al. Laparoscopic versus laparotomic surgical treatment in apparent stage I ovarian cancer: a multi-center retrospective cohort study. World J Surg Oncol. 2024 Feb 22; 22(1): 62. https://doi.org/10.1186/s12957-024-03345-1. PMID: 38389046; PMCID: PMC10882876

2. Jokhadze N., Das A., Dizon D.S. Global cancer statistics: A healthy population relies on population health. CA Cancer J Clin. 2024 May-Jun; 74(3): 224–226. https://doi.org/10.3322/caac.21838. Epub 2024 Apr 4. PMID: 38572764

3. Котова Е.Г., Папанова Е.К., Адамян Л.В. Своевременное выявление и лечение злокачественных новообразований репродуктивных органов у женщин как резерв роста ожидаемой продолжительности жизни в Российской Федерации. Проблемы репродукции. 2023; 29(6): 6–11. https://doi.org/10.17116/repro2023290616 /

4. Osann K., Wenzel L., McKinney C., et al. Fear of recurrence, emotional well-being and quality of life among long-term advanced ovarian cancer survivors. Gynecol Oncol. 2023 Apr; 171: 151– 158. https://doi.org/10.1016/j.ygyno.2023.02.015. Epub 2023 Mar 9. PMID: 36905875; PMCID: PMC10681156.

5. Yu Y., Li X.B., Lin Y.L., et al. Effi cacy of 1 384 cases of peritoneal carcinomatosis underwent cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy. Zhonghua Wei Chang Wai Ke Za Zhi. 2021 Mar 25; 24(3): 230–239. Chinese. https://doi.org/10.3760/cma.j.cn.441530-20201110-00603. PMID: 34645167

6. Shan D., Cheng S., Ma Y., Peng H. Serum levels of tumor markers and their clinical signifi cance in epithelial ovarian cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023 Jul 28; 48(7): 1039– 1049. https://doi.org/10.11817/j.issn.1672-7347.2023.230090. PMID: 37724407; PMCID: PMC10930038

7. Suzuki T., Conant A., Jung Y., et al. A stem-like patient-derived ovarian cancer model of platinum resistance reveals dissociation of stemness and resistance. Int J Mol Sci. 2024 Mar 29; 25(7): 3843. https://doi.org/10.3390/ijms25073843. PMID: 38612653; PMCID: PMC11011340

8. Torre L.A., Trabert B., DeSantis C.E., et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018 July; 68(4): 284–296. https://doi.org/10.3322/caac.21456. Epub 2018 May 29. PMID: 29809280; PMCID: PMC6621554

9. Mikuła-Pietrasik J., Witucka A., Pakuła M., et al. Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell Mol Life Sci. 2019 Feb; 76(4): 681–697. https://doi.org/10.1007/s00018-018-2954-1. Epub 2018 Oct 31. PMID: 30382284; PMCID: PMC6514066

10. Vergote I., Gonzalez-Martin A., Lorusso D., et al. Clinical research in ovarian cancer: consensus recommendations from the Gynecologic Cancer InterGroup. Lancet Oncol. 2022 Aug; 23(8): e374–e384. https://doi.org/10.1016/S1470-2045(22)001395. Erratum in: Lancet Oncol. 2022 Sep; 23(9): e404. https://doi.org/10.1016/S1470-2045(22)00502-2. PMID: 35901833; PMCID: PMC9465953

11. Lawton F.G., Pavlik E.J. Perspectives on ovarian cancer 1809 to 2022 and beyond. Diagnostics (Basel). 2022 Mar 24; 12(4): 791. https://doi.org/10.3390/diagnostics12040791. PMID: 35453839; PMCID: PMC9024743

12. Sun D., Shi X., Li S., et al. CAR-T cell therapy: a breakthrough in traditional cancer treatment strategies (Review). Mol Med Rep. 2024 Mar; 29(3): 47. https://doi.org/10.3892/mmr.2024.13171. Epub 2024 Jan 26. PMID: 38275119; PMCID: PMC10835665

13. Wang L., Zhang L., Dunmall L.C., et al. The dilemmas and possible solutions for CAR-T cell therapy application in solid tumors. Cancer Lett. 2024 Jun 1; 591: 216871. https://doi.org/10.1016/j. canlet.2024.216871. Epub 2024 Apr 10. PMID: 38604310

14. Tong C., Zhang Y., Liu Y., et al. Optimized tandem CD19/ CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood. 2020 October 1; 136(14): 1632–1644. https://doi.org/10.1182/blood.2020005278. PMID: 32556247; PMCID: PMC7596761

15. Li Y., Zheng Y., Liu T., et al. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med. 2024 May 1; 22(1): 413. https://doi.org/10.1186/s12967-02405206-7. PMID: 38693513; PMCID: PMC11064426

16. Jogalekar M.P., Rajendran R.L., Khan F., et al. CAR T-CellBased gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol. 2022 Jul 22; 13: 925985. https://doi.org/10.3389/fimmu.2022.925985. PMID: 35936003; PMCID: PMC9355792

17. Flugel C.L., Majzner R.G., Krenciute G., et al. Overcoming ontarget, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2023 Jan; 20(1): 49–62. https://doi.org/10.1038/s41571-022-00704-3. Epub 2022 Nov 23. PMID: 36418477; PMCID: PMC10278599

18. Daei Sorkhabi A., Mohamed Khosroshahi L., Sarkesh A., et al. The current landscape of CAR T-cell therapy for solid tumors: mechanisms, research progress, challenges, and counterstrategies. Front Immunol. 2023 Mar 20; 14: 1113882. https://doi.org/10.3389/fimmu.2023.1113882. PMID: 37020537; PMCID: PMC10067596

19. Biondi M., Tettamanti S., Galimberti S., et al. Selective homing of CAR-CIK cells to the bone marrow niche enhances control of the acute myeloid leukemia burden. Blood. 2023 May 25; 141(21): 2587–2598. https://doi.org/10.1182/blood.2022018330. PMID: 36787509; PMCID: PMC10646802

20. Hong Y., Walling B.L., Kim H.R., et al. ST3GAL1 and βII-spectrin pathways control CAR T cell migration to target tumors. Nat Immunol. 2023 Jun;24(6): 1007–1019. https://doi.org/10.1038/s41590-023-01498-x. Epub 2023 Apr 17. PMID: 37069398; PMCID: PMC10515092.

21. Zhang X.W., Wu Y.S., Xu T.M., et al. CAR-T Cells in the treatment of ovarian cancer: a promising cell therapy. Biomolecules. 2023 Mar 2; 13(3): 465. https://doi.org/10.3390/biom13030465. PMID: 36979400; PMCID: PMC10046142

22. Cutri-French C., Nasioudis D., George E., et al. CAR-T Cell Therapy in ovarian cancer: where are we now? Diagnostics (Basel). 2024 Apr 16; 14(8): 819. https://doi.org/10.3390/diagnostics14080819. PMID: 38667465; PMCID: PMC11049291

23. Giamougiannis P., Martin-Hirsch P.L., Martin F.L. The evolving role of MUC16 (CA125) in the transformation of ovarian cells and the progression of neoplasia. Carcinogenesis. 2021 Apr 17; 42(3): 327–343. https://doi.org/10.1093/carcin/bgab010. PMID: 33608706

24. Wang C.W., Weaver S.D., Boonpattrawong N., et al. A revised molecular model of ovarian cancer biomarker CA125 (MUC16) enabled by long-read sequencing. Cancer Res Commun. 2024 Jan 31; 4(1): 253–263. https://doi.org/10.1158/2767-9764.CRC-230327. PMID: 38197671; PMCID: PMC10829539

25. Lee K., Perry K., Xu M., et al. Structural basis for antibody recognition of the proximal MUC16 ectodomain. J Ovarian Res. 2024 Feb 19; 17(1): 41. https://doi.org/10.1186/s13048-024-01373-9. PMID: 38374055; PMCID: PMC10875768

26. Song Y., Yuan M., Wang G. Update value and clinical application of MUC16 (cancer antigen 125). Expert Opin Ther Targets. 2023 Jul-Dec; 27(8): 745–756. https://doi.org/10.1080/14728222.2023. 2248376. Epub 2023 Aug 24. PMID: 37584221

27. Casey N.P., Kleinmanns K., Forcados C., et al. Effi cient CAR T cell targeting of the CA125 extracellular repeat domain of MUC16. J Immunother Cancer. 2024 Apr 11; 12(4): e008179. https://doi.org/10.1136/jitc-2023-008179. PMID: 38604812; PMCID: PMC11015285

28. Боженко В., Кудинова Е., Кулинич Т. и др. Патент РФ RU 2 747 095 C2. Мономолекулярный химерный Т-клеточный рецептор к раковому антигену СА125. Опубликовано: 26.04.2021 Бюл. № 12 /

29. Albelda S.M. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat Rev Clin Oncol. 2024 Jan; 21(1): 47–66. https://doi.org/10.1038/s41571-023-00832-4. Epub 2023 Oct 30. PMID: 37904019

30. Wang Y., Suarez E.R., Kastrunes G., et al. Evolution of cell therapy for renal cell carcinoma. Mol Cancer. 2024 Jan 9; 23(1): 8. https://doi.org/10.1186/s12943-023-01911-x. PMID: 38195534; PMCID: PMC10775455

31. Wendel P., Reindl L.M., Bexte T., et al. Arming immune cells for battle: a brief journey through the advancements of T and NK cell immunotherapy. Cancers (Basel). 2021 Mar 23; 13(6): 1481. https://doi.org/10.3390/cancers13061481. PMID: 33807011; PMCID: PMC8004685

32. Киселева Я.Ю., Большакова О.Б., Кулинич Т.М. и др. Сравнение эффективности плазмид 1 и 3 поколения, кодирующих химерный Т- клеточный рецептор к опухолевому маркеру рака яичников. Вестник Российского Научного Центра Рентгенорадиологии. 2021; 21(2): 25–40


评论

浏览: 933


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)