Preview

谢切诺夫学报

高级搜索

Histomorphometric changes in pituitary gonadotropic endocrinocytes when exposed to dark deprivation

https://doi.org/10.47093/2218-7332.2024.15.3.36-47

摘要

Aim. To assess the effect of 30-day dark deprivation on functional and histomorphometric changes in adenohypophysis gonadotropic endocrinocytes and their reversibility in mature male rats.

Materials and methods. Mongrel white male rats (n = 36) weighing 365–375 g at 4 months of age were randomly divided into three groups (each n = 12). For 30 days the control group was in automatic light-dark mode 12/12, and the rats of experimental groups 1 and 2 were in round-the-clock artificial lighting (24/0, 300 Lux), then the rats of group 2 were returned to 12/12 mode for the next 14 days. In the animals of the control and group 1 during their lifetime on the 31st day, and in group 2 on the 45th day, blood was taken from the abdominal aorta and levels of follicle-stimulating (FSH) and luteinizing (LH) hormones, melatonin, and Klotho protein were determined an enzyme-linked immunosorbent assay and immunoassay and after which they were removed from the experiment by decapitation. Postmortem histological and immunohistochemical examination of the pituitary gland was done using rabbit polyclonal antibodies targeting caspase-3 and Klotho protein, as well as morphometry. Statistical data processing was performed using the Kruskal-Wallis test with post-hoc Dunn’s test.

Results. Light desynchronization in the form of 30 days of dark deprivation increased FSH and LH levels and decreased melatonin and Klotho protein levels in the blood of male rats; increased gonadotropic endocrine cell area, volume, and perimeter by 23.1% (p < 0.001), 48.7% (p < 0.001), and 10.9% (p < 0.001), respectively; and increased nucleus area, volume, and perimeter by 16%, 11.7%, and 2.5%, respectively. An immunohistochemical study showed an increase in the specific area of caspase-3-immunoreactive gonadotropic endocrinocytes by 25.2% without obvious morphological signs of apoptosis, and a decrease in the expression of Klotho protein by 25.7%. All indicators were reversible, the levels of FSH and Klotho protein in the blood of animals almost reached their initial values after 14 days of restoration of the light-dark cycle 12/12.

Conclusion. Dark deprivation for 30 days in male rats induced reversible processes of accelerated aging and apoptosis in cells, as evidenced by changes in the expression of aging markers in gonadotropic endocrinocytes and levels of gonadotropic hormones in the blood. When the light-dark mode is restored, the levels of FSH and Klotho protein normalize as early as 14 days.

关于作者

L. Kondakova
Volgograd State Medical University
俄罗斯联邦


S. Kalashnikova
Volgograd State Medical University
俄罗斯联邦


参考

1. Wang X.R., Tao F.B. Progress in researches on the effect of artificial light at night on infertility. Zhonghua Yu Fang Yi Xue Za Zhi. 2022 Jun 6; 56(6): 847–851 (In Chinese). https://doi.org/10.3760/cma.j.cn112150-20211214-01155. PMID: 35785868

2. Ricketts E.J., Joyce D.S., Rissman A.J., et al. Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health. Sleep Med Rev. 2022 Aug; 64: 101667. https://doi.org/10.1016/j.smrv.2022.101667. PMID: 36064209; PMCID: PMC10693907

3. Touitou Y., Reinberg A., Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci. 2017 Mar 15; 173: 94–106. https://doi.org/10.1016/j.lfs.2017.02.008. PMID: 28214594

4. Koopman A.D.M., Rauh S.P., van ‘t Riet E., et al. The association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: the new hoorn study. J Biol Rhythms. 2017 Jun 20; 32(4): 359–368. https://doi.org/10.1177/0748730417713572. PMID: 28631524

5. Garcia-Saenz A., Sánchez de Miguel A., Espinosa A., et al. Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (MCC-Spain study). Environ Health Perspect. 2018 Apr 5; 126(4): 047011. https://doi.org/10.1289/ehp1837. PMID: 29687979

6. Fleury G., Masis-Vargas A., Kalsbeek A. Metabolic implications of exposure to light at night: lessons from animal and human stu­dies. Obesity (Silver Spring). 2020 Jul; 28 Suppl 1(Suppl 1): S18–S28. https://doi.org/10.1002/oby.22807. PMID: 32700826

7. Munzel T., Hahad O., Daiber A. The dark side of nocturnal light pollution. Outdoor light at night increases risk of coronary heart disease. Eur Heart J. 2020 Nov 21; 42(8): 831–834. https://doi.org/10.1093/eurheartj/ehaa866. PMID: 33221876; PMCID: PMC7897459

8. von Gall C. The effects of light and the circadian system on rhythmic brain function. Int J Mol Sci. 2022 Mar 3; 23(5): 2778. https://doi.org/10.3390/ijms23052778. PMID: 35269920

9. Lizneva D., Gavrilova-Jordan L., Walker W., et al. Androgen excess: investigations and management. Best Pract Res Clin Obstet Gynaecol. 2016 May 19; 37: 98–118. https://doi.org/10.1016/j.bpobgyn.2016.05.003. PMID: 27387253

10. Кондакова Л.И., Калашникова С.А., Полякова Л.В. и др. Морфофункциональные изменения семенников крыс при преждевременном старении, вызванном темновой депривацией. Вестник ВолгГМУ. 2022; 19(4): 123–127. https://doi.org/10.19163/1994-9480-2022-19-4-123-127. EDN: OGWTYM

11. Кузьмин Е.А., Шамитько З.В., Пьявченко Г.А. и др. Биомаркеры нейровоспаления в диагностике черепномозговой травмы и нейродегенеративных заболеваний: обзор литературы. Сеченовский вестник. 2024; 15(1): 20–35. https://doi.org/10.47093/2218-7332.2024.15.1.20-35. EDN: PWFHHW

12. Патракеева В.П., Контиевская Е.В. Современные представления об апоптозе. Якутский медицинский журнал. 2023; 3(83): 97–101. https://doi.org/10.25789/YMJ.2023.83.24. EDN: ZAQONG

13. Сорокина Ю.А., Мосина А.А., Постникова А.Д. и др. Влияние лекарственных средств на уровень белка Клото. Международный научно-исследовательский журнал. 2020; 12(102): 142–145. https://doi.org/10.23670/IRJ.2020.102.12.061. EDN: FMQPML

14. Lessard-Beaudoin M., Laroche M., Loudghi A., et al. Organ-specific alteration in caspase expression and STK3 proteolysis during the aging process. Neurobiol Aging. 2016; 47: 50–62. https://doi.org/10.1016/j.neurobiolaging.2016.07.003. PMID: 27552481

15. Beroske L., Van den Wyngaert T., Stroobants S., et al. Molecular imaging of apoptosis: the case of caspase-3 radiotracers. Int J Mol Sci. 2021 Apr 11; 22(8): 3948. https://doi.org/10.3390/ijms22083948. PMID: 33920463; PMCID: PMC8069194

16. Lo Y., Yi P.L., Hsiao Y.T., et al. A prolonged stress rat model recapitulates some PTSD-like changes in sleep and neuronal connectivity. Commun Biol. 2023 Jul 12; 6(1): 716. https://doi.org/10.1038/s42003-023-05090-9. PMID: 37438582; PMCID: PMC10338557

17. Макарова М.Н., Шекунова Е.В., Рыбакова А.В. и др. Объем выборки лабораторных животных для экспериментальных исследований. Фармация. 2018; 67(2): 3–8. https://doi.org/10.29296/25419218-2018-02-01. EDN: YTJSHU

18. Осиков М.В., Бойко М.С., Огнева О.И. и др. Этолого-иммуннологические взаимосвязи при экспериментальном десинхронозе в условиях люминисцентного освещения. Патологическая физиология и экспериментальная терапия. 2023; 67(3): 58–67. https://doi.org/10.25557/0031-2991.2023.03.58-67. EDN: BVPCAA

19. Пахомий С.С., Злобина О.В., Бугаева И.О. и др. Влияние длительности нарушения циркадных ритмов световым воздействием на морфологию печени лабораторных крыс. Оптика и спектроскопия. 2022; 130(6): 856–860. https://doi.org/10.21883/OS.2022.06.52627.34-22. EDN: LQBIGI

20. Коптяева К.Е., Мужикян А.А., Гущин Я.А. и др. Методика вскрытия и извлечения органов лабораторных животных (крысы). Лабораторные животные для научных исследований. 2018; 2: 71–93. https://doi.org/10.29296/2618723X-2018-02-08. EDN: XSMTCH

21. Feldman A.T., Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol. 2014; 1180: 31–43. https://doi.org/10.1007/978-1-4939-1050-2_3. PMID: 25015141

22. Guligowska A., Krystek Z., Pawlikowski M., et al. Gonadotropins at advanced age – perhaps they are not so bad? Correlations between gonadotropins and sarcopenia indicators in older adults. Front Endocrinol (Lausanne). 2021 Dec 24; 12: 797243. https://doi.org/10.3389/fendo.2021.797243. PMID: 35002975; PMCID: PMC8739969

23. Okafor I.A., Okpara U.D., Ibeabuchi K.C. The reproductive functions of the human brain regions: a systematic review. J Hum Reprod Sci. 2022 Jun 30; 15(2): 102. https://doi.org/10.4103/jhrs.jhrs_18_22. PMID: 35928473; PMCID: PMC9345277

24. Берштейн Л.М., Цырлина Е.В. Гипоталамо-гипофизарная система: возраст и основные неинфекционные заболевания (злокачественные новообразования гормонозависимых тканей, кардиоваскулярная патология и сахарный диабет 2 типа). Российский физиологический журнал им. И.М. Сеченова. 2020; 106(6): 667–682. https://doi.org/10.31857/s0869813920060023. EDN: NHSGMQ

25. Davies D.M., van den Handel K., Bharadwaj S., et al. Cellular enlargement – A new hallmark of aging? Front Cell Dev Biol. 2022 Nov 10; 10: 1036602. https://doi.org/10.3389/fcell.2022.1036602. PMID: 36438561; PMCID: PMC9688412

26. Cadart C., Venkova L., Piel M., et al. Volume growth in animal cells is cell cycle dependent and shows additive fluctuations. Elife. 2022 Jan 28; 11: e70816. https://doi.org/10.7554/elife.70816. PMID: 35088713; PMCID: PMC8798040

27. Осадчук Л.В., Клещев М.А., Типисова Е.В. и др. Показатели сперматогенеза, гормонального и метаболического статуса у мужчин разных возрастных групп на Европейском Севере России. Физиология человека. 2019; 45: 107–114. https://doi.org/10.1134/S0131164619020073. EDN: VXHKMF

28. Mey M., Bhatta S., Casadesus G. Luteinizing hormone and the aging brain. Vitam Horm. 2021; 115: 89–104. https://doi.org/10.1016/bs.vh.2020.12.005. PMID: 33706966; PMCID: PMC9853463

29. Кондакова Л.И., Багметова В.В., Сиротенко В.С. и др. Влияние мелатонина на динамику массы тела и уровень белка Клото в крови у животных с преждевременным старением, вызванным темновой депривацией. Вестник ВолгГМУ. 2022; 19(4): 110–117. https://doi.org/10.19163/1994-9480-2022-19-4-110-117. EDN: QOGVHB

30. Дубиков А.И., Калиниченко С.Г., Матвеева Н.Ю. Апоптоз как фактор организации аутоиммунного воспаления при ревматоидном артрите. Современная ревматология. 2019; 13(3): 95–101. https://doi.org/10.14412/1996-7012-2019-3-95-101. EDN: SBABJJ

31. Daugaard S., Markvart J., Bonde J.P., et al. Light exposure du­ring days with night, outdoor, and indoor work. Ann Work Expo Health. 2019 Mar 13; 63(6): 651–665. https://doi.org/10.1093/annweh/wxy110. PMID: 30865270

32. Rahman S.A., Wright K.P., Lockley S.W., et al. Characterizing the temporal dynamics of melatonin and cortisol changes in response to nocturnal light exposure. Sci Rep. 2019 Dec 23; 9(1): 19720. https://doi.org/10.1038/s41598-019-54806-7. PMID: 31873098; PMCID: PMC6928018

33. Злобина О.В., Москвина А.О., Иванов А.Н. и др. Функциональная активность звеньев стресс-реализующей и стресс-лимитирующей систем в условиях светового десинхроноза. Российский физиологический журнал им. И.М. Сеченова. 2021; 107(3): 312–320. https://doi.org/10.31857/S0869813921030109. EDN: JMSSKN

34. Ершов А.В., Грошева М.Н., Степанянц С.В. и др. Влияние сна на структурно-функциональное состояние предстательной железы. Consilium Medicum. 2022; 24(11): 816–821. https://doi.org/10.26442/20751753.2022.11.202022. EDN: HZRRXT

35. Хабаров С.В., Стерликова Н.А. Мелатонин и его роль в циркадной регуляции репродуктивной функции (обзор литературы). Вестник новых медицинских технологий. 2022; 29(3): 17–31. https://doi.org/10.24412/1609-2163-2022-3-17-31. EDN: OQVYHS


补充文件

1. The ARRIVE guidelines 2.0: author checklist
主题
类型 Исследовательские инструменты
下载 (107KB)    
索引源数据 ▾

评论

浏览: 416


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)