维恩图和概率论在临床研究中的应用
https://doi.org/10.47093/2218-7332.2020.11.4.5-14
摘要
简介
当前,统计学在医学研究中起着关键作用,其研究的对象是数据的积累和总结,以及对实验数据之间关系的解释。本文开启了有关生物医学统计学问题的介绍,向读者介绍了维恩图,以及概率和集合论的基本概念,对这些的理解对于掌握描述性统计学和推理统计学的原理是必不可少的。本文介绍了维恩图在现代临床研究中的应用,还定义了基本事件的空间,具有集合(联合,交集)的基本运算以及它们在经典概率论中的应用。所有示例均通过维恩图进行说明。
关于作者
N. M. Bulanov俄罗斯联邦
Nikolay M. Bulanov, Cand. of Sci. (Medicine), Assistant Professor, Department of Internal, Occupational Diseases and Rheumatology,
8/2, Trubetskaya str., Moscow, 119991
+7 (919) 100-22-79
O. B. Blyuss
俄罗斯联邦
Oleg B. Blyuss, Cand. of Sci. (Phys. and Math.), Associate Professor, Department of Paediatrics and Paediatric Infectious Diseases, 8/2, Trubetskaya str., Moscow, 119991;
Senior Lecturer, School of Physics, Astronomy and Mathematics, College Lane, Hatfield, AL10 9AB, United Kingdom
D. B. Munblit
俄罗斯联邦
Daniil B. Munblit, PhD, Professor, Department of Paediatrics and Paediatric Infectious Diseases, 8/2, Trubetskaya str., Moscow, 119991;
Honorary Senior Lecturer, Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Exhibition Rd, South Kensington, London, SW7 2BU, United Kingdom
T. V. Nazarenko
英国
Tatiana V. Nazarenko, Research Fellow, Institute for Women’s Health (Women’s Cancer),
Gower Street, London, WC1E 6BT
T. V. Butnaru
俄罗斯联邦
Denis V. Butnaru, Cand. of Sci. (Medicine), Vice-rector for Research,
8/2, Trubetskaya str., Moscow, 119991
M. Yu. Nadinskaia
俄罗斯联邦
Maria Yu. Nadinskaia, Cand. of Sci. (Medicine), Associate Professor, Department of Internal Medicine Propaedeutics, Gastroenterology and Hepatology,
8/2, Trubetskaya str., Moscow, 119991
A. A. Zaikin
俄罗斯联邦
Alexey A. Zaikin, Cand. of Sci. (Phys. and Math.), Deputy Director, Centre for Analysis of Complex Systems, 8/2, Trubetskaya str., Moscow, 119991;
Professor of Systems Medicine, Institute for Women’s Health and Department of Mathematics, Gower Street, London, WC1E 6BT, United Kingdom
参考
1. Kirkwood B.R., Sterne J.A.C. Essential Medical Statistics (2nd ed.), Wiley-Blackwell, 2003. 512 p.
2. Venn J. On the diagrammatic and mechanical representation of propositions and reasonings. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 1880; 10(59): 1–18. https://doi.org/10.1080/14786448008626877
3. Bultena B., Ruskey F. Venn diagrams with few vertices. Electronic Journal of Combinatorics. 1998; 5: R44: 1–21. https://doi.org/10.37236/1382
4. Baron M. E. A note on the historical development of logic diagrams: Leibniz, Euler and Venn. The Mathematical Gazette. 1969; 53(384): 113–125. https://doi.org/10.2307/3614533
5. Martin B., Chadwick W., Yi T., et al. VENNTURE — a novel Venn diagram investigational tool for multiple pharmacological dataset analysis. PLoS One. 2012; 7(5): e36911. https://doi.org/10.1371/journal.pone.0036911 Erratum in: PLoS One. 2012; 7(5): https://doi.org/10.1371/annotation/27f1021c-b6f2-4b90-98bc-fcacd2679185 PMID: 22606307
6. Shade A., Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol. 2012 Jan; 14(1): 4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x PMID: 22004523.
7. Soriano J.B., Davis K.J., Coleman B., et al. The proportional Venn diagram of obstructive lung disease: two approximations from the United States and the United Kingdom. Chest. 2003 Aug; 124(2):474–81. https://doi.org/10.1378/chest.124.2.474 PMID: 12907531
8. Pirooznia M., Nagarajan V., Deng Y. GeneVenn — A web application for comparing gene lists using Venn diagrams. Bioinformation. 2007 Apr 10; 1(10): 420–2. https://doi.org/10.6026/97320630001420 PMID: 17597932
9. Hulsen T., de Vlieg J., Alkema W. BioVenn — a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. 2008 Oct 16; 9: 488. https://doi.org/10.1186/1471-2164-9-488 PMID: 18925949
10. Kestler H.A., Müller A., Kraus J.M., et al. VennMaster: area-proportional Euler diagrams for functional GO analysis of microarrays. BMC Bioinformatics. 2008 Jan 29; 9: 67. https://doi.org/10.1186/1471-2105-9-67 PMID: 18230172
11. Edwards A. Venn diagrams for many sets. New Scientist, 1989; 121(1646): 51–6.