Preview

Сеченовский вестник

Расширенный поиск

Перспективы использования циркулирующей опухолевой ДНК в качестве маркера состояния злокачественных новообразований

Аннотация

В стать е представлен обзор одного из наиболее интенсивно изучаемых в настоящее время методов диагностики онкологических заболеваний – генетического анализа циркулирующей опухолевой ДНК. Благодаря высокой чувствительности и специфичности, а также возможности применения при решении различных клинических задач – диагностике, контроле течения, оценке вероятности рецидива онкологических заболеваний, а также коррекции проводимого лечения при обнаружении резистентности опухоли к химиотерапевтическим препаратам – данный метод представляется наиболее перспективным с точки зрения внедрения в общественное здравоохранение. Тем не менее, высокая стоимость исследования, малое количество проведенных клинических испытаний и необходимость стандартизации на данный момент не могут позволить ему занять место в клинике. 

Об авторах

Н. В. Чебышев
Первый МГМУ им. И.М. Сеченова
Россия

Николай Васильевич Чебышев, д.м.н., академик РАО, заслуженный профессор, заведующий кафедрой биологии и общей генетики

119991, г. Москва, ул. Трубецкая, д. 8, стр. 2

тел.: 8 (495) 609–14–00



Т. Ю. Дегтяревская
Первый МГМУ им. И.М. Сеченова
Россия

к.б.н., доцент кафедры биологии и общей генетики



Н. А. Сушенцев
Первый МГМУ им. И.М. Сеченова
Россия

студент 3-го курса лечебного факультета



А. С. Аракелян
Первый МГМУ им. И.М. Сеченова
Россия

студент 2-го курса лечебного факультета



А. К. Галеева
Первый МГМУ им. И.М. Сеченова
Россия

студент 2-го курса лечебного факультета



Список литературы

1. Stewart B. W., Wild C. P., Adewole I. F. et al. World Cancer Report 2014. WHO Press, 2014. – 630 p.

2. Jemal A., Bray F., Center M. M. et al. Global Cancer Statistics. CA CANCER J CLIN 2011; 61:69–90.

3. Пальцев М.А., Залетаев Д.В., Стрельников В.В. и др. Системы генетических и эпигенетических маркеров в диагностике онкологических заболеваний. М. «Медицина». 2009. 384 с. [Paltsev M.A., Zaletaev D.V., Strelnikov V.V. et al. Systems of genetic and epigenetic markers in the diagnosis of cancer. M. «Meditsina». 2009. 384 p.]

4. Attie T.J.I., Go A. V., Mulders M.A.M. et al. The Origin of Circulating Free DNA. Clinical Chemistry 2007; 53-12.

5. Sorenson G. D., Pribish D. M., Valone F. H. et al. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomark. Prev. 1994; 3, 67-71.

6. Vasioukhin V., Anker P., Maurice P. et al. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br. J. Haematol. 1994; 86, 774-779.

7. Marzese D.M., Hirose H., Hoon D.S. Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Exp. Rev. Mol. Diagn. 2013; 13, 827–844.

8. Taly V., Pekin D., Benhaim L. et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin. Chem. 2013; 59, 1722–1731.

9. Higgins M.J., Jelovac D., Barnathan E. et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin. Cancer Res. 2012; 18, 3462–3469.

10. Spindler K.L., Pallisgaard N., Vogelius I. et al. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin. Cancer Res. 2012; 18, 1177–1185.

11. Dawson, S.J., Tsui, D.W., Murtaza, M. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 2013; 368, 1199–1209.

12. Dowler Nygaard, A., Spindler, K.L., Pallisgaard, N et al. Levels of cell-free DNA and plasma KRAS during treatment of advanced NSCLC. Oncol. Rep. 2014; 31, 969–974.

13. Kukita, Y., Uchida, J., Oba, S. et al. Quantitative identifi cation of mutant alleles derived from lung cancer in plasma cell-free DNA via anomaly detection using deep sequencing data. PLoS ONE 2013; 8, e81468.

14. Kinugasa H., Nouso K., Tanaka T. et al. Droplet digital PCR measurement of HER2 in patients with gastric cancer. British Journal of Cancer 2015; 112, 1652-1655.

15. Andersen R. F., Karen-Lise G. S., Brandslund I. et al. Improved sensitivity of circulating tumor DNA measurement using short PCR amplicons. Clinica Chimica Acta 2015; 439, 97-101.

16. Kristof J., Bruening E., Wong S. et al. Absolute quantifi cation of EGFR activation and resistance mutations as well as copy number in circulating nucleic acids by droplet digital PCR. Cancer Res 2013; 73, 3491.

17. Hindson C. M., Chevillet J. R., Briggs H. A. et al. Absolute quantifi cation by droplet digital PCR versus analog realtime PCR. Nature Methods 2013; 10, 1003-1005.

18. Umetani N., Kim J., Hiramatzu S. et al. Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clinical Chemistry 2006; 52, 1062-1069.

19. Tomita H., Ichikawa D., Ikoma D. et al. Quantifi cation of circulating plasma DNA fragments as tumor markers in patients with esophageal cancer. Anticancer Research 2007; 27, 2737-2741.

20. Diaz L.A. Jr., Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 2014; 32, 579–586.

21. Diaz L.A. Jr., Williams R.T., Wu J. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012; 486, 537–540.

22. Kauhanen S.P., Komar G., Seppanen M.P. et al. A prospective diagnostic accuracy study of 18F-fl uorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann. Surg. 2009; 250, 957–963.

23. Casali, M.; Froio, A.; Carbonelli, C.; Versari, A. PET/CT imaging in oncology: Exceptions that prove the rule. Case Rep. Oncol. Med. 2013; 865-032.

24. Pavlou M. P., Diamandis E. P., Blasutig I. M. The long journey of cancer biomarkers from the bench to the clinic. Clinical Chemistry 2013; 59, 147-157.

25. Beaver J. A., Jelovac D., Balukrishna S. et al. Detection of Cancer DNA in Plasma of Patients with Early-Stage Breast Cancer. Clin Cancer Res, 2014; 20, 2643.

26. Bettegowda C., Sausen M., Leary R. J. et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Science Translational Medicine 2014; 6, 224.

27. Kaur S., Baine M. J., Jain M. et al. Early diagnosis of pancreatic cancer: challenges and new developments. Biomarkers in Medicine 2012; 6, 597-612.

28. Diamandis E. P. The failure of protein biomarkers to reach the clinic: why, and what can be done to address the problem? BMC Medicine 2012; 10, 87.

29. Wu L., Xiaoqanq Q. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 2015; 44, 2963-2997.

30. Hernandez B., Parnell A., Pennington S. R. Why have so few proteomic biomarkers 'survived' validation? (Sample size and independent validation considerations). Proteomics, 2014; 14, 1587-1592.

31. McLarty J.L., Yeh C. Circulating cell-free DNA: The blood biopsy in cancer management. MOJ Cell. Sci. Rep. 2015; 2, 0021.

32. Diehl F., Schmidt K., Choti, M.A. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008; 14, 985–990.

33. Dawson S.J., Rosenfeld N., Caldas C. Circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 2013; 369, 93–94.

34. Reinert T., Scholer L.V., Thomsen R., et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut; 2015.

35. Sanmamed M.F., Fernandez-Landazuri S., Rodriguez C. et al. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin. Chem. 2015; 61, 297–304.

36. Lipson E.J., Velculescu, V.E., Pritchard T.S. et al. Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J. Immunother. Cancer 2014; 2, 42.

37. Hamakawa T., Kukita Y., Kurokawa Y. et al. Monitoring gastric cancer progression with circulating tumour DNA. Br. J. Cancer 2015; 112, 352–356.

38. Oxnard G.R., Paweletz C.P., Kuang Y. et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin. Cancer Res. 2014; 20, 1698–1705.

39. Ono A., Fujimoto A., Yamamoto Y. et al. Circulating tumor DNA analysis for liver cancers and its usefulness as a liquid biopsy. Cellular And Molecular Gastroenterology And Hepatology, 2015.

40. Arnedos M., Soria J.C., Andre F. et al. Personalized treatments of cancer patients: A reality in daily practice, a costly dream or a shared vision of the future from the oncology community? Cancer Treat. Rev. 2014; 40, 1192–1198.

41. Arnedos M., Vielh P., Soria J.C. et al. The genetic complexity of common cancers and the promise of personalized medicine: Is there any hope? J. Pathol. 2014; 232, 274–282.

42. Blair B.G., Bardelli A., Park B.H. Somatic alterations as the basis for resistance to targeted therapies. J. Pathol. 2014; 232, 244–254.

43. Diaz L.A. Jr., Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 2014; 32, 579–586.

44. Forbes S. A., Beare D., Gunasekaran P. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucl. Acids Res. 2015; 43, 805-811.


Рецензия

Просмотров: 279


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)