Molecular and morphological markers of neuronal death in acute cerebrovascular accidents
https://doi.org/10.47093/2218-7332.2022.13.4.18-32
摘要
Acute cerebral circulation disorder is one of the most discussed issues in modern intensive care and neurology, as it is a severe condition, leading to disability or death of the patient, in the absence of immediate medical care. This review discusses general and specific biological markers of stroke, genetic markers of stroke, and current data on their diagnostic significance. The main mechanisms of brain tissue cell death in stroke, such as apoptosis, necrosis, ferroptosis, parthanatosis, sarmoptosis, autolysis, autophagy, oncosis, excitotoxic death are analyzed; the morphological features of the observed processes and their structural manifestations are reviewed. For each type of cell death in nervous tissue, the most frequently detected molecular markers are discussed: specific kinases, Toll-like receptors in the case of apoptosis; serine-threonine protein kinases, components of the polyubiquitin system detected in necrosis; transferrin 1 receptors, typical for ferroptosis; poly(ADP-ribose)-polymerase, whose activity increases in parthanatosis; slow Wallerian degeneration protein that accumulates during sarmoptosis; and other biomarkers characteristic of both individual types of nerve cell death and general pathological processes affecting the brain.
关于作者
V. Kudryavtseva俄罗斯联邦
E. Kuzmin
俄罗斯联邦
A. Moiseeva
俄罗斯联邦
M. Obelchakova
俄罗斯联邦
P. Sinitsina
俄罗斯联邦
T. Filistovich
白俄罗斯
N. Kartashkina
俄罗斯联邦
G. Piavchenko
俄罗斯联邦
A. Golubev
俄罗斯联邦
S. Kuznetsov
俄罗斯联邦
参考
1. Strong K., Mathers C., Bonita R. Preventing stroke: saving lives around the world. Lancet Neurol. 2007; 6(2): 182–187. https://doi.org/10.1016/S1474-4422(07)70031-5. PMID: 17239805.
2. Love S., Perry A., Ironside J., Budka H. Greenfield’s Neuropathology – Two Volume Set. CRC Press; 2018: 1988. ISBN: 9781498721288.
3. Lansberg M.G., O’Donnell M.J., Khatri P., et al. Antithrombotic and thrombolytic therapy for ischemic stroke: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; 141(2 Suppl): e601S–e636S. https://doi.org/10.1378/chest.11-2302. PMID: 22315273.
4. Saini V., Guada L., Yavagal D.R. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 2021; 97(20 Suppl 2): S6–S16. https://doi.org/10.1212/WNL.0000000000012781. PMID: 34785599.
5. Ушаков И.Б. Гипоксические механизмы комбинированных воздействий. Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты. М.: Истоки; 2004: 297–397. ISBN: 5-88242-282-5.
6. Antipov V.V., Fedorov V.P., Kordenko A.N., Ushakov I.B. Modification of radiation changes in the hemato-encephalic barrier using exogenous hypoxia. Med Radiol (Mosk). 1987; 32(7): 53–57. PMID: 3613924.
7. Акулинин В.А., Семченко В.В., Степанов С.С., Беличенко П.В. Структурные изменения дендритных шипиков пирамидных нейронов слоя III сенсомоторной коры большого мозга крыс в отдаленном постишемическом периоде. Морфология. 2002; 122(5): 39–44. PMID: 12530305.
8. Семченко В.В., Степанов С.С., Никель А.Э., Акулинин В.А. Постишемическая реорганизация дендроархитектоники сектора САЗ гиппокампа белых крыс с высокой судорожной готовностью мозга. Морфология. 2000; 118(6): 25–30. https://doi.org/10.1023/a:1012325228747. PMID: 11210456.
9. Martin L.J. Neuronal cell death in nervous system development, disease, and injury (Review). Int J Mol Med. 2001; 7(5): 455–478. https://doi.org/10.3892/ijmm.7.5.455. PMID: 11295106.
10. Katan M., Elkind M. The potential role of blood biomarkers in patients with ischemic stroke: An expert opinion. Clin Transl Neurosci. 2018; 2(1): 13. http://dx.doi.org/10.1177/2514183X18768050
11. Qingqing W., Chengmei L. The role of alpha-lipoic acid in the pathomechanism of acute ischemic stroke. Cell Physiol Biochem. 2018; 48(1): 42–53. https://doi.org/10.1159/000491661. PMID: 29996116.
12. Walsh K.B., Hart K., Roll S., et al. Apolipoprotein A-I and Paraoxonase-1 are potential blood biomarkers for ischemic stroke diagnosis. J Stroke Cerebrovasc Dis. 2016; 25(6): 1360–1365. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.02.027. PMID: 26994915.
13. Tobin W.O., Kinsella J.A., Kavanagh G.F., et al. Profile of von Willebrand factor antigen and von Willebrand factor propeptide in an overall TIA and ischaemic stroke population and amongst subtypes. J Neurol Sci. 2017; 375: 404–410. https://doi.org/10.1016/j.jns.2017.02.045. PMID: 28320178.
14. Tsai C.F., Thomas B., Sudlow C. Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review. Neurology. 2013; 81(3): 264–272. https://doi.org/10.1212/wnl.0b013e31829bfde3. PMID: 23858408.
15. Suhail M., Arijit B., Saleh Mohammed A., et al. The role of PAI-1 4G/5G promoter polymorphism and its levels in the development of ischemic stroke in young Indian population. Clin Appl Thromb Hemost. 2017; 23(8): 1071–1076. https://doi.org/10.1177/1076029617705728. PMID: 28460568.
16. Bustamante A., Lopez-Cancio E., Pich S., et al. Blood biomarkers for the early diagnosis of stroke: the stroke-chip study. Stroke. 2017; 48(9): 2419–2425. https://doi.org/10.1161/strokeaha.117.017076. PMID: 28716979.
17. Mingina T., Zhao M. Role of PARK7 and NDKA in stroke management: a review of PARK7 and NDKA as stroke biomarkers. Biomark Med. 2018; 12(5): 419–425. https://doi.org/10.2217/bmm-2018-0013. PMID: 29697269.
18. Montaner J., Mendioroz M., Ribó M., et al. A panel of biomarkers including caspase-3 and D-dimer may differentiate acute stroke from stroke-mimicking conditions in the emergency department. J Intern Med. 2011; 270: 166–174. https://doi.org/10.1111/j.13652796.2010.02329.x. PMID: 21198992.
19. Misra S., Kumar A., Kumar P., et al. Blood-based protein biomarkers for stroke differentiation: A systematic review. Proteomics Clin Appl. 2017; 11 (9–10). https://doi.org/10.1002/prca.201700007. PMID: 28452132.
20. Лушников Е.Ф., Абросимов А.Ю. Гибель клетки (апоптоз). М.: Медицина; 2001: 189 с. ISBN 5-225-04424-7.
21. Horky M., Kotala V., Anton M. Nucleolus and apoptosis. Ann NY Acad Sci. 2002; 973: 258–264. https://doi.org/10.1111/j.1749-6632.2002.tb04645.x. PMID: 12485873.
22. Hengarten О.М. The biochemistry of apoptosis. Nature. 2000; 407(6805): 770–776. https://doi.org/10.1038/35037710. PMID: 11048727.
23. Матвеева Н.Ю. Апоптоз: морфологические особенности и молекулярные механизмы. Тихоокеанский медицинский журнал. 2003; 4: 12–16. EDN: HPMMQH
24. Fricker M., Tolkovsky A.M., Borutaite V., et al. Neuronal Cell Death. Physiol Rev. 2018; 98(2): 813–880. https://doi.org/10.1152/physrev.00011.2017. PMID: 3613924.
25. Glushakova O.Y., Glushakov A.A., Wijesinghe D.S., et al. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ. 2017; 3(2): 87–108. https://doi.org/10.4103/bc.bc_27_16. PMID: 30276309.
26. Yamano K., Youle R.J. Two different axes CALCOCO2-RB1CC1 and OPTN-ATG9A initiate PRKN-mediated mitophagy. Autophagy. 2020; 16(11): 2105–2107. https://doi.org/10.1080/15548627.2020.1815457. PMID: 32892694.
27. Crowley L.C., Marfell B.J., Waterhouse N.J. Detection of DNA fragmentation in apoptotic cells by TUNEL. Cold Spring Harb Protoc. 2016(10). https://doi.org/10.1101/pdb.prot087221. PMID: 27698233.
28. Grasl-Kraupp B., Ruttkay-Nedecky B., Koudelka H., et al. In situ detection of fragmented DNA (TUNEL assay) to discriminate among apoptosis, necrosis and auto cell death: A cautionary note. Hepatology. 1995; 21(5): 1465–1468. https://doi.org/10.1002/hep.1840210534. PMID: 7737654.
29. Деев Р.В., Билялов А.И., Жамеписов Т.М. Современные представления о клеточной гибели. Гены и клетки. 2018; 13(1): 6–19. https://dx.doi.org/10.23868/201805001
30. Li Y.Q., Peng J.J., Peng J., Luo X.J. The deafness gene GSDME: its involvement in cell apoptosis, secondary necrosis, and cancers. Naunyn Schmiedebergs Arch Pharmacol. 2019; 392(9): 1043–1048. https://doi.org/10.1007/s00210-019-01674-7. PMID: 31230091.
31. Xie W., Zhou P., Sun Y., et al. Protective effects and target network analysis of Ginsenoside Rg1 in cerebral ischemia and reperfusion injury: A comprehensive overview of experimental studies. Cells. 2018; 7(12): 270. https://doi.org/10.3390/cells7120270. PMID: 30545139.
32. Bogolepov N.N., Matveeva T.S., Dovedova E.L., Vorob’eva T.V. Changes in nerve cell ultrastructure in hypoxia. Zh Nevropatol Psikhiatr Im S S Korsakova. 1972; 72(12): 1819–1827. PMID: 4350145.
33. Imai H., Matsuoka M., Kumagai T., et al. Lipid peroxidationdependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 2017; 403: 143–170. https://doi.org/10.1007/82_2016_508. PMID: 28204974.
34. Reichert C.O., de Freitas F.A., Sampaio-Silva J., et al. Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci. 2020; 21(22): E8765. https://doi.org/10.3390/ijms21228765. PMID: 33233496.
35. Gao M., Yi J., Zhu J., et al. Role of mitochondria in ferroptosis. Mol Cell. 2019; 73(2): 354–363. https://doi.org/10.1016/j.molcel.2018.10.042. PMID: 30581146.
36. Jelinek A., Heyder L., Daude M., et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med. 2018; 117: 45–57. https://doi.org/10.1016/j.freeradbiomed.2018.01.01.9. PMID: 29378335.
37. Cui Y., Zhang Y., Zhao X., et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 2021; 93: 312–321. https://doi.org/10.1016/j.bbi.2021.01.003. PMID: 33444733.
38. Cui Y., Zhang Z., Zhou X., et al. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation. 2021; 18(1): 249. https://doi.org/10.1186/s12974-021-02231-x. PMID: 34717678.
39. Jin Y., Zhuang Y., Liu M., et al. Inhibiting ferroptosis: A novel approach for stroke therapeutics. Drug Discov Today. 2021; 26(4): 916–930. https://doi.org/10.1016/j.drudis.2020.12.020. PMID: 33412287.
40. Chen B., Chen Z., Liu M., et al. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows longterm cerebroprotective effects. Brain Res Bull. 2019; 153: 122–132. https://doi.org/10.1016/j.brainresbull.2019.08.013. PMID: 31442590.
41. Fatokun A.A., Dawson V.L., Dawson T.M. Parthanatos: mitochondriallinked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014; 171(8): 2000–2016. https://doi.org/10.1111/bph.12416. PMID: 24684389.
42. Virag L., Scott G.S., Cuzzocrea S., et al. Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation. Immunology. 1998; 94(3): 345–355. https://doi.org/10.1046/j.1365-2567.1998.00534.x. PMID: 9767416.
43. Virag L., Szabo C., Salzman A.L. Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J Immunol. 1998; 161(7): 3753–3759. PMID: 9759901.
44. Virag L., Scott D.S., Antal-Szalmás P., et al. Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity. Mol Pharmacol. 1999; 56(4): 824–833. PMID: 10496967.
45. Virag L., Szabo C. BCL-2 protects peroxynitrite-treated thymocytes from poly(ADP-ribose) synthase (PARS)-independent apoptotic but not from PARS-mediated necrotic cell death. Free Radic Biol Med. 2000; 29(8): 704–713. https://doi.org/10.1016/s0891-5849(00)00359-2. PMID: 11053771.
46. Erdelyi K., Bai P., Kovács I., et al. Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB J. 2009; 23(10): 3553–3563. https://doi.org/10.1096/fj.09-133264. PMID: 19571039.
47. Batnasan E., Xie S., Zhang Q., Li Y. Observation of parthanatos involvement in diminished ovarian reserve patients and melatonin’s protective function through inhibiting ADP-Ribose (PAR) expression and preventing AIF translocation into the nucleus. Reprod Sci. 2020; 27(1): 75–86. https://doi.org/10.1007/s43032019-00005-8. PMID: 32046374.
48. Rolls A., Shechter R., London A., et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat. Cell Biol. 2007; 9(9): 1081–2008. https://doi.org/10.1038/ncb1629. PMID: 17704767.
49. McKenzie B.A., Mamik M.K., Saito L.B., et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci U S A. 2018; 115(26): E6065–E6074. https://doi.org/10.1073/pnas.1722041115. PMID: 29895691.
50. Zheng M., Kanneganti T.D. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 2020; 297(1): 26–38. https://doi.org/10.1111/imr.12909. PMID: 32729116.
51. Жаботинский Ю.М. Нормальная и патологическая морфология нейрона. Л.: Медицина; 1965: 323.
52. Туманский В.А., Евсеев А.В. Морфологическая характеристика ретроградного разрушения (ретроградной дегенерации) нейронов головного мозга при постреанимационной энцефалопатии. Патология. 2008; 24–28.
53. Summers D.W., Gibson D.A., DiAntonio A., Milbrandt J. SARM1specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc Natl Acad Sci USA. 2016; 113(41): E6271–E6280. https://doi.org/10.1073/pnas.1601506113. PMID: 27671644.
54. DiAntonio A. Axon degeneration: mechanistic insights lead to therapeutic opportunities for the prevention and treatment of peripheral neuropathy. Pain. 2019; 160 Suppl 1(Suppl 1): S17– S22. https://doi.org/10.1097/j.pain.0000000000001528. PMID: 31008845.
55. Jensen K., WuWong D.J., Wong S., et al. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp Biol Med (Maywood). 2019; 244(8): 621–629. https://doi.org/10.1177/1535370219833624. PMID: 30836793.
56. Zhang R., Varela M., Forn-Cuní G., et al. Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages. Cell Death Dis. 2020; 11(4): 277. https://doi.org/10.1177/1535370219833624. PMID: 32332700.
57. Kuballa P., Nolte W.N., Castoreno A.B., Xavier R.J. Autophagy and the immune system. Ann Rev Immunol. 2012; 30: 611–646. https://doi.org/10.1146/annurev-immunol-020711-074948. PMID: 22449030.
58. Galluzzi L., Vitale I., Abrams J.M., et al. Molecular definition of cellular death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Different. 2012; 19(1): 107–120. https://doi.org/10.1038/cdd.2011.96. PMID: 21760595.
59. Okada H., Mak T.W. Pathways of apoptotic and non-apoptotic death in tumor cells. Nat Rev Cancer. 2004; 4(8): 592–603. https://doi.org/10.1038/nrc1412. PMID: 15286739.
60. Agrotis A., Pengo N., Burden J.J., Ketteler R. Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy. 2019; 15(6): 976– 997. https://doi.org/10.1080/15548627.2019.1569925. PMID: 30661429.
61. Mathew B., Chennakesavalu M., Sharma M., et al. Autophagy and post-ischemic conditioning in retinal ischemia. Autophagy. 2021; 17(6): 1479–1499. https://doi.org/10.1080/15548627.2020.1767371. PMID: 32452260.
62. Johansen T., Lamark T. Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. J Mol Biol. 2020; 432(1): 80–103. https://doi.org/10.1016/j.jmb.2019.07.016. PMID: 31310766.
63. Kroemer G., Galluzzi L., Vandenabeele P., et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009; 16(1): 3–11. https://doi.org/10.1038/cdd.2008.150. PMID: 18846107.
64. Scarabelli T.M., Knight R., Stephanou A., et al. Clinical implications of apoptosis in ischemic myocardium. Current problems in cardiology. 2006; 31 (3): 181–264. https://doi.org/10.1016/j.cpcardiol.2005.11.002. PMID: 16503249.
65. Wei S., Low S.W., Poore C.P., et al. Comparison of Anti-oncotic effect of TRPM4 blocking antibody in neuron, astrocyte and vascular endothelial cell under hypoxia. Front Cell Dev Biol. 2020; 8: 562584. https://doi.org/10.3389/fcell.2020.562584. PMID: 33195194.
66. Lopina O.D., Tverskoi A.M., Klimanova E.A., et al. Ouabaininduced cell death and survival. Role of α1-Na,K-ATPasemediated signaling and [Na+]i/[K+]i-ependent gene expression. Front Physiol. 2020; 11: 1060. https://doi.org/10.3389/fphys.2020.01060. PMID: 33013454.
67. Mehta A., Prabhakar M., Kumar P., et al. Excitotoxicity: Bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013; 698(1–3): 6–18. https://doi.org/10.1016/j.ejphar.2012.10.032. PMID: 23123057.
68. Vincent P., Mulle C. Kainate receptors in epilepsy and excitotoxicity. Neuroscience. 2009; 158(1): 309–323. https://doi.org/10.1016/j.neuroscience.2008.02.066. PMID: 18400404.
69. Gonzalez L.L., Garrie K., Turner M.D. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res. 2020; 1867(6): 118677. https://doi.org/10.1016/j.bbamcr.2020.118677. PMID: 32057918.
70. Acar V., Couto Fernandez F.L., Buscariolo F.F., et al. Immunohistochemical evaluation of PARP and Caspase-3 as prognostic markers in prostate carcinomas. Clin Med Res. 2021; 19(4): 183–191. https://doi.org/10.3121/cmr.2021.1607. PMID: 34933951.
71. Wang G., Long J., Gao Y., et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nat Cell Biol. 2019; 21(2): 214–225. https://doi.org/10.1038/s41556-018-0266-1. PMID: 30692626.
72. Chen T.K., Coca S.G., Estrella M.M., et al., CKD Biomarkers Consortium (BioCon). Longitudinal TNFR1 and TNFR2 and Kidney Outcomes: Results from AASK and VA NEPHRON-D. J Am Soc Nephrol. 2022; 33(5): 996–1010. https://doi.org/10.1681/ASN.2021060735. PMID: 35314457.