Serum levels of chemical elements and carious lesions in children after antitumor therapy
https://doi.org/10.47093/2218-7332.2022.13.4.45-55
摘要
Aim. To study serum concentrations of trace and macro elements and their correlations in children and adolescents after antitumor therapy, depending on the presence or absence of caries.
Materials and methods. The study included 98 patients aged 4 to 17 years who were in remission after an antitumor therapy performed for acute leukemia or lymphomas. Patients with carious tooth lesions were included in group 1 (n = 34) and without caries – in group 2 (n = 64). We used inductively coupled plasma mass spectrometry to calculate the content of essential, conditionally essential and toxic elements in blood serum. The median and interquartile range were calculated, the Mann-Whitney U-test was applied to compare groups, and the Kendall rank correlation coefficient (τ) was calculated for tandem elements.
Results. In both groups, the concentrations of the studied elements were within the reference ranges. In group 1, compared with group 2, higher concentrations of potassium, arsenic, iodine and boron and lower concentrations of lithium and tungsten (p < 0.05) were noted. There were no differences in the concentration of phosphorus, calcium, magnesium, manganese, gold, silver, platinum, aluminum, beryllium, bismuth, cadmium, cobalt, chromium, copper, iron, mercury, lithium, molybdenum, nickel, rubidium, antimony, tin, vanadium, zinc, zirconium and thallium between the groups. Significant correlation coefficients in both groups were obtained for the iron/manganese tandem (τ = 0.24, p < 0.05). Different values of τ were got for nickel/ manganese, cobalt/iron, manganese/phosphorus, beryllium/lithium tandems: τ = 0.342 and τ = 0.14; τ = 0.363 and τ = 0.033; τ = –0.111 and τ = –0.326; τ = –0.365 and τ = 0.42, respectively, for groups 1 and 2.
Conclusion. In patients in remission after antitumor therapy, an association of caries with an increase (within reference values) in the concentration of essential (potassium, iodine) and conditionally essential elements (arsenic, boron), a decrease in the concentration of lithium and tungsten; as well as a change in the ratio of nickel/manganese, cobalt/iron, manganese/ phosphorus and change the direction of the correlation in the beryllium/lithium tandem was revealed.
关于作者
E. Zhukovskaya俄罗斯联邦
S. Savko
俄罗斯联邦
Yu. Obukhov
俄罗斯联邦
A. Karelin
俄罗斯联邦
A. Goncharov
俄罗斯联邦
Yu. Zhernov
俄罗斯联邦
A. Skalny
俄罗斯联邦
参考
1. Florea A.M., Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 2011; 3(1): 1351–1371. https://doi.org/10.3390/CANCERS3011351. PMID: 24212665.
2. Feng J.F., Lu L., Zeng P., et al. Serum total oxidant/antioxidant status and trace element levels in breast cancer patients. Int J Clin Oncol. 2012; 17(6): 575–583. https://doi.org/10.1007/S10147-011-0327-Y. PMID: 21968912.
3. Wilmers J., Bargmann S. Nature’s design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomater. 2020; 107: 1–24. https://doi.org/10.1016/J.ACTBIO.2020.02.019. PMID: 32087326.
4. Habelitz S., Marshall S.J., Marshall G.W., Balooch M. Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol. 2001; 46(2): 173–183. https://doi.org/10.1016/S0003-9969(00)00089-3. PMID: 11163325.
5. Ахмедбейли Р.М. Современные данные о минеральном составе, структуре и свойствах твердых зубных тканей. Биомедицина (Баку). 2016; 2: 22–27. https://doi.org/10.24412/ FE4PDDYLZZW
6. Михейкина Н.И. Особенности строения интактной зубной эмали у лиц с различным уровнем устойчивости к кариесу. Здравоохранение Югры: опыт и инновации. 2016; 3(8): 13–17. EDN: WMWMJR
7. Бурак Ж.М., Сукало А.В., Терехова Т.Н. Воздействие свинцовой интоксикации на человека и животных, влияние на развитие и функции зубочелюстной системы. Медицинский журнал. 2005; 4: 10–13.
8. Yamamoto T., Hasegawa T., Yamamoto T., et al. Histology of human cementum: Its structure, function, and development. Jpn Dent Sci Rev. 2016; 52(3): 63–74. https://doi.org/10.1016/J.JDSR.2016.04.002. PMID: 28408958.
9. Fischer A., Wiechuła D. Age-dependent changes in Pb concentration in human teeth. Biol Trace Elem Res. 2016; 173(1): 47–54. https://doi.org/10.1007/S12011-016-0643-1. PMID: 26888348.
10. Asaduzzaman K., Khandaker M.U., Binti Baharudin N.A., et al. Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution. Chemosphere. 2017; 176: 221–230. https://doi.org/10.1016/J.CHEMOSPHERE.2017.02.114. PMID: 28273529.
11. Shaik I., Dasari B., Shaik A., et al. Functional role of inorganic trace elements on enamel and dentin formation: A review. J Pharm Bioallied Sci. 2021; 13 (Suppl 2): S952–S956. https://doi.org/10.4103%2Fjpbs.jpbs_392_21. PMID: 35017905.
12. Zhukovskaya E.V., Obuchov Y., Gor A., Karelin A. Changes in the composition of electrolytes in the saliva of children and adolescents after the end of anticancer therapy. Trace Elements and Electrolytes. Abstract of Meeting of the Russian Society for Trace Elements in Medicine (RUSTEM). 2021; 38(3): 160. E-pub: May 7, 2021. https://doi.org/10.5414/TEX01685
13. Pathak M.U., Shetty V., Kalra D. Trace elements and oral health: A systematic review. J Adv Oral Res. 2016; 7: 12–20. https://doi.org/10.1177/2229411220160203
14. Poletto A.C., Singi P., Barri R.M., et al. Relationship of levels of trace elements in saliva and dental caries in preschool children using total reflection X-ray fluorescence technique (TXRF)⋆. J Trace Elem Med Biol. 2021; 63: 126663. https://doi.org/10.1016/j.jtemb.2020.126663. PMID: 33069944.
15. Cabré N., Luciano-Mateo F., Arenas M., et al. Trace element concentrations in breast cancer patients. Breast. 2018; 42: 142–149. https://doi.org/10.1016/J.BREAST.2018.09.005. PMID: 30296647.
16. Ding X., Jiang M., Jing H., et al. Analysis of serum levels of 15 trace elements in breast cancer patients in Shandong, China. Environ Sci Pollut Res Int. 2015; 22: 7930–7935. https://doi.org/10.1007/S11356-014-3970-9. PMID: 25520207.
17. Ahmadi N., Mahjoub S., Hosseini R.H., et al. Alterations in serum levels of trace element in patients with breast cancer before and after chemotherapy. Caspian J Intern Med. 2018; 9(2): 134–139. https://doi.org/10.22088/CJIM.9.2.134. PMID: 29732030.
18. Modaressi A., Hadjibabaie M., Shamshiri A.R., et al. Trace elements (Se, Zn, and Cu) levels in patients with newly diagnosed acute leukemia. Int J Hematol Oncol Stem Cell Res. 2015; 6(4): 5–10.
19. Kurdoglu Z., Kurdoglu M., Demir H., Sahin H.G. Serum trace elements and heavy metals in polycystic ovary syndrome. Hum Exp Toxicol. 2012; 31(5): 452–456. https://doi.org/10.1177/0960327111424299. PMID: 22027497.
20. Krasuska-Sławińska E., Dembowska-Bagińska B., Brożyna A., et al. Changes in the chemical composition of mineralised teeth in children after antineoplastic treatment. Contemp Oncol. 2018; 22(1): 37–41. https://doi.org/10.5114/WO.2018.74392. PMID: 29692662.
21. Huynh P.T., Dinh B.T., Nguyen L.T.T., et al. Investigation of the effects of chemotherapy on trace element contents in the nails in patients with colorectal cancer. J Radioanal Nucl Chem. 2021; 328: 1173–1180. https://doi.org/10.1007/s10967-021-07734-8
22. Sousa C., Moutinho C., Vinha A.F., Matos C. Trace minerals in human health: Iron, zinc, copper, manganese and fluorine. IJSRM. Human. 2019; 13(3): 57–80.
23. Жуковская Е.В., Нор А.А., Карелин А.Ф. Параметры гомеостаза химических элементов в биологических образцах пациентов, завершивших терапию по поводу злокачественных новообразований. Микроэлементы в медицине. 2021; 22(2): 43–49. https://doi.org/10.19112/2413-6174-2021-22-5-43-49. EDN: WCZEEP
24. Иванов С.И., Подунова Л.Г., Скачков В.Б. и др. Определение химических элементов в биологических средах и препаратах методами атомно-эмиссионной спектрометрии с индуктивно связанной плазмой и масс-спектрометрии с индуктивно связанной плазмой: Методические указания. Минздрав России, 2003. 56 с. ISBN 5-7508-0462-3.
25. Doğan M.S. Relation of trace elements on dental health. Trace Elements-Human Health and Environment. 2018; 71. https://dx.doi.org/10.5772/intechopen.75899
26. Кисельникова Л.П., Алексеева И.А., Данилова И.Г. и др. Изучение особенностей фосфорнокальциевого обмена в патогенезе кариеса у детей подросткового возраста. Российский Медицинский Журнал. 2014; 20(2): 27–30. EDN: SCFEBT
27. Обухов Ю.А. Локальные и системные процессы, влияющие на развитие кариеса у детей (обзор литературы). Педиатрический вестник Южного Урала. 2015; 2: 63–66. EDN: VDOYXJ
28. Shaik P.S., Pachava S. The role of vitamins and trace elements on oral health: a systematic review. Int J Med Rev. 2017; 4(1): 22–31. https://doi.org/10.29252/ijmr-040105