Ovarian cancer, malignant ascites and microenvironment. Literature review
https://doi.org/10.47093/2218-7332.2023.14.2.21-30
Abstract
Ovarian cancer (OC) is a heterogenous disease in terms of genetic mutations and tumor phenotypes and can be divided into I and II types. Type II high grade tumors are more common, accompanied by ascites, and are the main cause of cancer-related death in women. OC associated ascites is considered as valuable source of tumor material containing a wide range of dissolved components and cell populations. Over the past decades, the cellular and acellular components of ascites have been studied, but its effect on chemoresistance and the development of metastasis continues to be studied. This review describes the pathogenesis of ascites in OC, it’s cellular and acellular components, many of which are prognostic factors as well as markers of the effectiveness of anticancer therapy. Further study of the ascitic fluid composition in OC will help to identify not only prognostic factors, but also the points of application of targeted drugs and will improve the results of OC treatment.
About the Authors
O. I. AleshikovaRussian Federation
Olga I. Aleshikova, Cand. of Sci. (Medicine), Senior researcher, Scientific Research Institute of Оncogynecology and Mammology
4 Oparina str., Moscow, 117997, Russia
+7 (926) 917-43-09
N. A. Babaeva
Russian Federation
Nataliya A. Babaeva, Dr. of Sci. (Medicine), Leading researcher, Scientific Research Institute of Оncogynecology and Mammology
4, Oparina str., Moscow,117997
E. V. Gerfanova
Russian Federation
Evgeniya V. Gerfanova, oncologist, Innovative Oncology and Gynecology Department, Scientific Research Institute of Оncogynecology and Mammology
4, Oparina str., Moscow,117997
I. B. Antonova
Russian Federation
Irina B. Antonova, Dr. of Sci. (Medicine), Head of the Laboratory of Comprehensive Diagnostic and Treatment of Urogenital and Reproductive systems in adults and children, Research Department of Surgery, Urology, Gynecology and Invasive Technologies in Oncology
86, Profsoyuznaya str., Moscow, 117997
V. O. Shender
Russian Federation
Victoria O. Shender, Cand. of Sci. (Chemistry), Head of the Laboratory of Molecular Oncology
1a, Malaya Pirogovskaya str., Moscow, 119435
A. E. Babaeva
Russian Federation
Aleksandra E. Babaeva, sixth-year student, Institute of Clinical Medicine
8/2, Trubetskaya str., Moscow, 119991
L. A. Ashrafyan
Russian Federation
Levon A. Ashrafyan, Academician of the RAS, Dr. of Sci. (Medicine), Professor, Director of the Scientific Research Institute of Оncogynecology and Mammology
4, Oparina str., Moscow,117997
References
1. Sung H., Ferlay J., Siegel R.L., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May; 71(3): 209–249. https://doi.org/10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338
2. Mikuła-Pietrasik J., Uruski P., Tykarski A., Książek K. The peritoneal “soil” for a cancerous “seed”: a comprehensive review of the pathogenesis of intraperitoneal cancer metastases. Cell Mol Life Sci. 2018 Feb; 75(3): 509–525. https://doi.org/10.1007/s00018-017-2663-1. Epub 2017 Sep 27. PMID: 28956065; PMCID: PMC5765197
3. Almeida-Nunes D.L., Mendes-Frias A., Silvestre R., et al. Immune tumor microenvironment in ovarian cancer ascites. Int J Mol Sci. 2022 Sep 14; 23(18): 10692. https://doi.org/10.3390/ijms231810692. PMID: 36142615; PMCID: PMC9504085
4. Geng Z., Pan X., Xu J., Jia X. Friend and foe: the regulation network of ascites components in ovarian cancer progression. J Cell Commun Signal. 2022 Oct 13. https://doi.org/10.1007/s12079-022-00698-8. Epub ahead of print. PMID: 36227507
5. Ritch S.J., Telleria C.M. The transcoelomic ecosystem and epithelial ovarian cancer dissemination. Front Endocrinol (Lausanne). 2022 Apr 28; 13: 886533. https://doi.org/10.3389/fendo.2022.886533. PMID: 35574025; PMCID: PMC9096207
6. Ford C.E., Werner B., Hacker N.F., Warton K. The untapped potential of ascites in ovarian cancer research and treatment. Br J Cancer. 2020 Jul; 123(1): 9–16. https://doi.org/10.1038/s41416-020-0875-x. Epub 2020 May 8. PMID: 32382112; PMCID: PMC7341795
7. Алешикова О.И., Антонова И.Б., Бабаева Н.А. Динамика цитокинового профиля в асците при распространенном раке яичников. Акушерство и гинекология: новости, мнения, обучение. 2019; 7(1): 16–23. https://doi.org/10.24411/2303-96982019-11002.
8. Hodge C., Badgwell B.D. Palliation of malignant ascites. J Surg Oncol. 2019 Jul; 120(1): 67–73. https://doi.org/10.1002/jso.25453. Epub 2019 Mar 22. PMID: 30903617
9. Rodriguez E.F., Monaco S.E., Khalbuss W., et al. Abdominopelvic washings: a comprehensive review. Cytojournal. 2013 Apr 24; 10: 7. https://doi.org/10.4103/1742-6413.111080. PMID: 23858317; PMCID: PMC3709516
10. Živadinović R., Petrić A., Krtinić D., et al. Ascites in ovarian carcinoma – reliability and limitations of cytological analysis. West Indian Med J. 2015 Jun; 64(3): 236–240. https://doi.org/10.7727/wimj.2014.230. Epub 2015 Apr 8. PMID: 26426176; PMCID: PMC4763898
11. Sangisetty S.L., Miner T.J. Malignant ascites: A review of prognostic factors, pathophysiology and therapeutic measures. World J Gastrointest Surg. 2012 Apr 27; 4(4): 87–95. https://doi.org/10.4240/wjgs.v4.i4.87. PMID: 22590662; PMCID: PMC3351493
12. Ayhan A., Gultekin M., Taskiran C., et al. Ascites and epithelial ovarian cancers: a reappraisal with respect to different aspects. Int J Gynecol Cancer. 2007 Jan-Feb; 17(1): 68–75. https://doi.org/10.1111/j.1525-1438.2006.00777.x. PMID: 17291234
13. Krugmann J., Schwarz C.L., Melcher B., et al. Malignant ascites occurs most often in patients with high-grade serous papillary ovarian cancer at initial diagnosis: a retrospective analysis of 191 women treated at Bayreuth Hospital, 2006-2015. Arch Gynecol Obstet. 2019 Feb; 299(2): 515–523. https://doi.org/10.1007/s00404-018-4952-9. Epub 2018 Nov 10. PMID: 30415435
14. Huang H., Li Y.J., Lan C.Y., et al. Clinical significance of ascites in epithelial ovarian cancer. Neoplasma. 2013; 60(5): 546–552. https://doi.org/10.4149/neo_2013_071. PMID: 23790174
15. Holm-Nielsen P. Pathogenesis of ascites in peritoneal carcinomatosis. Acta Pathol Microbiol Scand. 1953; 33(1): 10–21. https://doi.org/10.1111/j.1699-0463.1953.tb04805.x. PMID: 13113944
16. Belotti D., Paganoni P., Manenti L., et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res. 2003 Sep 1; 63(17): 5224–5229. PMID: 14500349
17. Fang X., Yu S., Bast R.C., et al. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem. 2004 Mar 5; 279(10): 9653–9661. https://doi.org/10.1074/jbc.M306662200. Epub 2003 Dec 11. PMID: 14670967
18. Simpson-Abelson M.R., Loyall J.L., Lehman H.K., et al. Human ovarian tumor ascites fluids rapidly and reversibly inhibit T cell receptor-induced NF-κB and NFAT signaling in tumor-associated T cells. Cancer Immun. 2013 Jul 15; 13: 14. PMID: 23882159; PMCID: PMC3718770
19. Matte I., Lane D., Laplante C., et al. Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res. 2012; 2(5): 566–580. Epub 2012 Aug 20. PMID: 22957308; PMCID: PMC3433103
20. Mikuła-Pietrasik J., Uruski P., Szubert S., et al. Malignant ascites determine the transmesothelial invasion of ovarian cancer cells. Int J Biochem Cell Biol. 2017 Nov; 92: 6–13. https://doi.org/10.1016/j.biocel.2017.09.002. Epub 2017 Sep 6. PMID: 28888784
21. Mani S.A., Guo W., Liao M.J., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008 May 16; 133(4): 704–715. https://doi.org/10.1016/j.cell.2008.03.027. PMID: 18485877; PMCID: PMC2728032
22. Loret N., Denys H., Tummers P., Berx G. The role of epithelial-tomesenchymal plasticity in ovarian cancer progression and therapy resistance. Cancers (Basel). 2019 Jun 17; 11(6): 838. https://doi.org/10.3390/cancers11060838. PMID: 31213009; PMCID: PMC6628067
23. Wang Y., Yang B., Zhao J., et al. Epithelial-mesenchymal transition induced by bone morphogenetic protein 9 hinders cisplatin efficacy in ovarian cancer cells. Mol Med Rep. 2019 Mar; 19(3): 1501–1508. https://doi.org/10.3892/mmr.2019.9814. Epub 2019 Jan 3. PMID: 30628686; PMCID: PMC6390058
24. Rickard B.P., Conrad C., Sorrin A.J., et al. Malignant ascites in ovarian cancer: cellular, acellular, and biophysical determinants of molecular characteristics and therapy response. Cancers (Basel). 2021 Aug 26; 13(17): 4318. https://doi.org/10.3390/cancers13174318. PMID: 34503128; PMCID: PMC8430600
25. Mayani H., Chávez-González A., Vázquez-Santillan K., et al. Cancer stem cells: biology and therapeutic implications. Arch Med Res. 2022 Dec; 53(8): 770–784. https://doi.org/10.1016/j.arcmed.2022.11.012. Epub 2022 Nov 30. PMID: 36462951
26. Bapat S.A., Mali A.M., Koppikar C.B., Kurrey N.K. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005 Apr 15; 65(8): 3025–3029. https://doi.org/10.1158/0008-5472.CAN-04-3931. PMID: 15833827
27. Paullin T., Powell C., Menzie C., et al. Spheroid growth in ovarian cancer alters transcriptome responses for stress pathways and epigenetic responses. PLoS One. 2017 Aug 9; 12(8): e0182930. https://doi.org/10.1371/journal.pone.0182930. PMID: 28793334; PMCID: PMC5549971
28. Piché A. Malignant peritoneal effusion acting as a tumor environment in ovarian cancer progression: Impact and significance. World J Clin Oncol. 2018 Dec 20; 9(8): 167–171. https://doi.org/10.5306/wjco.v9.i8.167. PMID: 30622924; PMCID: PMC6314862
29. Dar S., Chhina J., Mert I., et al. Bioenergetic adaptations in chemoresistant ovarian cancer cells. Sci Rep. 2017 Aug 18; 7(1): 8760. https://doi.org/10.1038/s41598-017-09206-0. PMID: 28821788; PMCID: PMC5562731
30. Roy L., Bobbs A., Sattler R., et al. CD133 promotes adhesion to the ovarian cancer metastatic niche. Cancer Growth Metastasis. 2018 Apr 9; 11: 1179064418767882. https://doi.org/10.1177/1179064418767882. PMID: 29662326; PMCID: PMC5894897
31. Bellio C., DiGloria C., Foster R., et al. PARP inhibition induces enrichment of DNA repair-proficient CD133 and CD117 positive ovarian cancer stem cells. Mol Cancer Res. 2019 Feb; 17(2): 431– 445. https://doi.org/10.1158/1541-7786.MCR-18-0594. Epub 2018 Nov 6. PMID: 30401718
32. Xia Y., Wei X., Gong H., Ni Y. Aldehyde dehydrogenase serves as a biomarker for worse survival profiles in ovarian cancer patients: an updated meta-analysis. BMC Womens Health. 2018 Dec 6; 18(1): 199. https://doi.org/10.1186/s12905-018-0686-x. PMID: 30522488; PMCID: PMC6284301
33. Tayama S., Motohara T., Narantuya D., et al. The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer. Oncotarget. 2017 Jul 4; 8(27): 44312–44325. https://doi.org/10.18632/oncotarget.17871. PMID: 28574829; PMCID: PMC5546482
34. Shigdar S., Li Y., Bhattacharya S., et al. Inflammation and cancer stem cells. Cancer Lett. 2014 Apr 10; 345(2): 271–278. https://doi.org/10.1016/j.canlet.2013.07.031. Epub 2013 Aug 11. PMID: 23941828
35. Roy L., Cowden Dahl K.D. Can stemness and chemoresistance be therapeutically targeted via signaling pathways in ovarian cancer? Cancers (Basel). 2018 Jul 24; 10(8): 241. https://doi.org/10.3390/cancers10080241. PMID: 30042330; PMCID: PMC6116003
36. Ahmed N., Kadife E., Raza A., et al. Ovarian cancer, cancer stem cells and current treatment strategies: a potential role of Magmas in the current treatment methods. Cells. 2020 Mar 14; 9(3): 719. https://doi.org/10.3390/cells9030719. PMID: 32183385; PMCID: PMC7140629
37. Wintzell M., Hjerpe E., Åvall Lundqvist E., Shoshan M. Protein markers of cancer-associated fibroblasts and tumor-initiating cells reveal subpopulations in freshly isolated ovarian cancer ascites. BMC Cancer. 2012 Aug 18; 12: 359. https://doi.org/10.1186/1471-2407-12-359. PMID: 22901285; PMCID: PMC3517779
38. Worzfeld T., Finkernagel F., Reinartz S., et al. Proteotranscriptomics reveal signaling networks in the ovarian cancer microenvironment. Mol Cell Proteomics. 2018 Feb; 17(2): 270–289. https://doi.org/10.1074/mcp.RA117.000400. Epub 2017 Nov 15. PMID: 29141914; PMCID: PMC5795391
39. Patch A.M., Christie E.L., Etemadmoghadam D., et al. Wholegenome characterization of chemoresistant ovarian cancer. Nature. 2015 May 28; 521(7553): 489–494. https://doi.org/10.1038/nature14410. Erratum in: Nature. 2015 Nov 19; 527(7578): 398. PMID: 26017449
40. Nanki Y., Chiyoda T., Hirasawa A., et al. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing. Sci Rep. 2020 Jul 28; 10(1): 12581. https://doi.org/10.1038/s41598-020-69488-9. PMID: 32724113; PMCID: PMC7387538
41. Smolle E., Taucher V., Haybaeck J. Malignant ascites in ovarian cancer and the role of targeted therapeutics. Anticancer Res. 2014 Apr; 34(4): 1553–1561. PMID: 24692682
42. Kolomeyevskaya N., Eng K.H., Khan A.N., et al. Cytokine profiling of ascites at primary surgery identifies an interaction of tumor necrosis factor-α and interleukin-6 in predicting reduced progression-free survival in epithelial ovarian cancer. Gynecol Oncol. 2015 Aug; 138(2): 352–357. https://doi.org/10.1016/j.ygyno.2015.05.009. Epub 2015 May 20. PMID: 26001328; PMCID: PMC4522366
43. Lane D., Matte I., Garde-Granger P., et al. Inflammation-regulating factors in ascites as predictive biomarkers of drug resistance and progression-free survival in serous epithelial ovarian cancers. BMC Cancer. 2015 Jul 1; 15: 492. https://doi.org/10.1186/s12885-015-1511-7. PMID: 26122176; PMCID: PMC4486134
44. Gawrychowski K., Szewczyk G., Skopińska-Różewska E., et al. The angiogenic activity of ascites in the course of ovarian cancer as a marker of disease progression. Dis Markers. 2014; 2014: 683757. https://doi.org/10.1155/2014/683757. Epub 2014 Jan 23. PMID: 24591765; PMCID: PMC3925613
45. Jones V.S., Huang R.Y., Chen L.P., et al. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim Biophys Acta. 2016 Apr; 1865(2): 255–265. https://doi.org/10.1016/j.bbcan.2016.03.005. Epub 2016 Mar 16. PMID: 26993403
46. Cohen S., Bruchim I., Graiver D., et al. Platinum-resistance in ovarian cancer cells is mediated by IL-6 secretion via the increased expression of its target cIAP-2. J Mol Med (Berl). 2013 Mar; 91(3): 357–368. https://doi.org/10.1007/s00109-012-0946-4. Epub 2012 Sep 28. PMID: 23052480
47. Batchu R.B., Gruzdyn O.V., Kolli B.K., et al. IL-10 signaling in the tumor microenvironment of ovarian cancer. Adv Exp Med Biol. 2021; 1290: 51–65. https://doi.org/10.1007/978-3-030-556174_3. PMID: 33559854
48. Lim D., Do Y., Kwon B.S., et al. Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer. BMB Rep. 2020 Jun; 53(6): 291–298. https://doi.org/10.5483/BMBRep.2020.53.6.060. PMID: 32438972; PMCID: PMC7330806
49. Zhan N., Dong W.G., Wang J. The clinical significance of vascular endothelial growth factor in malignant ascites. Tumour Biol. 2016 Mar; 37(3): 3719–3725. https://doi.org/10.1007/s13277-015-4198-0. Epub 2015 Oct 13. PMID: 26462841
50. Masoumi Moghaddam S., Amini A., Morris D.L., Pourgholami M.H. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012 Jun; 31(1–2): 143–162. https://doi.org/10.1007/s10555-011-9337-5. PMID: 22101807; PMCID: PMC3350632
51. Avraham R., Yarden Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol. 2011 Feb; 12(2): 104–117. https://doi.org/10.1038/nrm3048. PMID: 21252999
52. Lassus H., Sihto H., Leminen A., et al. Gene amplification, mutation, and protein expression of EGFR and mutations of ERBB2 in serous ovarian carcinoma. J Mol Med (Berl). 2006 Aug; 84(8): 671–681. https://doi.org/10.1007/s00109-006-0054-4. Epub 2006 Apr 11. PMID: 16607561
53. Psyrri A., Kassar M., Yu Z., et al. Effect of epidermal growth factor receptor expression level on survival in patients with epithelial ovarian cancer. Clin Cancer Res. 2005 Dec 15; 11(24 Pt 1): 8637– 8643. https://doi.org/10.1158/1078-0432.CCR-05-1436. PMID: 16361548