Prospects for microbiome modulation in autoimmune diseases: a literature review
https://doi.org/10.47093/2218-7332.2024.15.1.4-19
摘要
Autoimmune diseases are characterized by dysregulation of immune responses and damage to healthy body tissues. Their complete cure remains elusive, and existing therapies are often accompanied by side effects. Recent studies have shown a signifi cant role of disturbances in the composition of the microbiome in the development of autoimmune reactions. Moreover, modulation of the microbiome through various therapeutic interventions represents a promising direction in the framework of complex therapy of the underlying disease. Extracellular vesicles, in particular exosomes, transport biologically active substances between cells, and a number of studies have shown their therapeutic effect in autoimmune diseases. However, the role of extracellular vesicles in modulating the microbiome remains poorly understood, and further research is needed to better understand their impact on the pathogenesis of autoimmune diseases and associated microbiome changes, as well as to develop new treatment strategies. The presented literature review, based on a study of English-language sources, examines the importance of the microbiota of different loci of the human body (intestines, skin, oral cavity) in the development of autoimmune diseases such as multiple sclerosis, psoriasis and Sjögren’s disease. The role of extracellular vesicles in modulating the microbiome during autoimmune diseases therapy is discussed.
关于作者
M. Peshkova俄罗斯联邦
A. Korneev
俄罗斯联邦
P. Koteneva
俄罗斯联邦
N. Kosheleva
俄罗斯联邦
P. Timashev
俄罗斯联邦
参考
1. Guo H., Li L., Liu B., et al. Inappropriate treatment response to DMARDs: A pathway to diffi cult-to-treat rheumatoid arthritis. Int Immunopharmacol. 2023 Sep; 122: 110655. https://doi.org/10.1016/J.INTIMP.2023.110655. Epub 2023 Jul 21. PMID: 37481847
2. Laigle L., Chadli L., Moingeon P. Biomarker-driven development of new therapies for autoimmune diseases: current status and future promises. Expert Rev Clin Immunol. 2023 Mar; 19(3): 305–314. https://doi.org/10.1080/1744666X.2023.2172404. Epub 2023 Jan 27. PMID: 36680799
3. Vangoitsenhoven R., Cresci G.A.M. Role of microbiome and antibiotics in autoimmune diseases. Nutr Clin Pract. 2020 Jun; 35(3): 406–416. https://doi.org/10.1002/NCP.10489. Epub 2020 Apr 22. PMID: 32319703
4. Rosser E.C., Mauri C. A clinical update on the signifi cance of the gut microbiota in systemic autoimmunity. J Autoimmun. 2016 Nov; 74: 85–93. https://doi.org/10.1016/J.JAUT.2016.06.009. Epub 2016 Jul 29. PMID: 27481556
5. López P., De Paz B., Rodríguez-Carrio J., et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016 Apr 5; 6: 24072. https://doi.org/10.1038/SREP24072. PMID: 27044888; PMCID: PMC4820712
6. Needell J.C., Zipris D. The role of the intestinal microbiome in type 1 diabetes pathogenesis. Curr Diab Rep. 2016 Oct; 16(10): 89. https://doi.org/10.1007/S11892-016-0781-Z. PMID: 27523648
7. Jangi S., Gandhi R., Cox L.M., et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016 Jun 28; 7: 12015. https://doi.org/10.1038/NCOMMS12015. PMID: 27352007; PMCID: PMC4931233
8. Chen J., Wright K., Davis J.M., et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016 Apr 21; 8(1): 43. https://doi.org/10.1186/S13073-016-0299-7. PMID: 27102666; PMCID: PMC4840970
9. Coit P., Sawalha A.H. The human microbiome in rheumatic autoimmune diseases: A comprehensive review. Clin Immunol. 2016 Sep; 170: 70–79. https://doi.org/10.1016/J.CLIM.2016.07.026. Epub 2016 Aug 2. PMID: 27493014
10. Wang W.M., Jin H.Z. Skin microbiome: an actor in the pathogenesis of psoriasis. Chin Med J (Engl). 2018 Jan 5; 131(1): 95–98. https://doi.org/10.4103/0366-6999.221269. PMID: 29271387; PMCID: PMC5754965
11. Olejniczak-Staruch I., Ciążyńska M., Sobolewska-Sztychny D., et al. Alterations of the skin and gut microbiome in psoriasis and psoriatic arthritis. Int J Mol Sci. 2021 Apr 13; 22(8): 3998. https://doi.org/10.3390/ijms22083998. PMID: 33924414; PMCID: PMC8069836
12. Nikitakis N.G., Papaioannou W., Sakkas L.I., et al. The autoimmunity–oral microbiome connection. Oral Dis. 2017 Oct; 23(7): 828–839. https://doi.org/10.1111/ODI.12589. Epub 2016 Nov 24. PMID: 27717092
13. Li K., Wei S., Hu L., et al. Protection of fecal microbiota transplantation in a mouse model of multiple sclerosis. Mediators Infl amm. 2020 Aug 5; 2020: 2058272. https://doi.org/10.1155/2020/2058272. PMID: 32831634; PMCID: PMC7426773
14. Engen P.A., Zaferiou A., Rasmussen H., et al. Single-arm, nonrandomized, time series, single-subject study of fecal microbiota transplantation in multiple sclerosis. Front Neurol. 2020 Sep 8; 11: 978. https://doi.org/10.3389/fneur.2020.00978. PMID: 33013647; PMCID: PMC7506051
15. Vijayashankar M., Raghunath N. Pustular psoriasis responding to probiotics – a new insight. Our Dermatology Online. 2012; 3: 326–329. https://doi.org/10.7241/OURD.20124.71
16. Choy C.T., Chan U.K., Siu P.L.K., et al. A novel E3 probiotics formula restored gut dysbiosis and remodelled gut microbial network and microbiome dysbiosis index (MDI) in Southern Chinese adult psoriasis patients. Int J Mol Sci. 2023 Mar 31; 24(7): 6571. https://doi.org/10.3390/ijms24076571. PMID: 37047542; PMCID: PMC10094986
17. Herrala M., Turunen S., Hanhineva K., et al. Low-dose doxycycline treatment normalizes levels of some salivary metabolites associated with oral microbiota in patients with primary sjögren’s syndrome. Metabolites. 2021 Sep 3; 11(9): 595. https://doi.org/10.3390/metabo11090595. PMID: 34564411; PMCID: PMC8470364
18. Secher T., Kassem S., Benamar M., et al. Oral administration of the probiotic strain Escherichia coli Nissle 1917 reduces susceptibility to neuroinfl ammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction. Front Immunol. 2017 Sep 14; 8: 1096. https://doi.org/10.3389/fimmu.2017.01096. PMID: 28959254; PMCID: PMC5603654
19. Lavasani S., Dzhambazov B., Nouri M., et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One. 2010 Feb 2; 5(2): e9009. https://doi.org/10.1371/JOURNAL.PONE.0009009. PMID: 20126401; PMCID: PMC2814855
20. Salehipour Z., Haghmorad D., Sankian M., et al. Bifi dobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinfl ammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed Pharmacother. 2017 Nov; 95: 1535–1548. https://doi.org/10.1016/J.BIOPHA.2017.08.117. Epub 2017 Sep 22. PMID: 28946394
21. He B., Hoang T.K., Tian X., et al. Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota. Front Immunol. 2019 Mar 7; 10: 385. https://doi.org/10.3389/FIMMU.2019.00385. PMID: 30899262; PMCID: PMC6416370
22. Zhao Q., Yu J., Zhou H., et al. Intestinal dysbiosis exacerbates the pathogenesis of psoriasis-like phenotype through changes in fatty acid metabolism. Sig Transduct Target Ther. 2023 Jan 30; 8(1): 40. https://doi.org/10.1038/s41392-022-01219-0. PMID: 36710269; PMCID: PMC9884668
23. Lu W., Deng Y., Fang Z., et al. Potential role of probiotics in ameliorating psoriasis by modulating gut microbiota in imiquimod-induced psoriasis-like mice. Nutrients. 2021 Jun 11; 13(6): 2010. https://doi.org/10.3390/NU13062010. PMID: 34207960; PMCID: PMC8230682
24. Chen Y.H., Wu C.S., Chao Y.H., et al. Lactobacillus pentosus GMNL-77 inhibits skin lesions in imiquimod-induced psoriasislike mice. J food drug Anal. 2017 Jul; 25(3): 559–566. https://doi.org/10.1016/J.JFDA.2016.06.003. Epub 2016 Aug 5. PMID: 28911642; PMCID: PMC9328808
25. Rather I.A., Bajpai V.K., Huh Y.S., et al. Probiotic lactobacillus sakei proBio-65 extract ameliorates the severity of imiquimod induced psoriasis-like skin infl ammation in a mouse model. Front Microbiol. 2018 May 17; 9: 1021. https://doi.org/10.3389/fmicb.2018.01021. PMID: 29867905; PMCID: PMC5968580
26. Akers J.C., Gonda D., Kim R., et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013 May; 113(1): 1–11. https://doi.org/10.1007/s11060-013-1084-8. Epub 2013 Mar 2. PMID: 23456661; PMCID: PMC5533094
27. Zhang J., Buller B.A., Zhang Z.G., et al. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinfl ammation in the demyelinating central nervous system. Exp Neurol. 2022 Jan; 347: 113895. https://doi.org/10.1016/J.EXPNEUROL.2021.113895. Epub 2021 Oct 13. PMID: 34653510
28. Riazifar M., Mohammadi M.R., Pone E.J., et al. Stem cellderived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano. 2019 Jun 25; 13(6): 6670–6688. https://doi.org/10.1021/acsnano.9b01004. Epub 2019 May 29. PMID: 31117376; PMCID: PMC6880946
29. Kimura K. Regulatory T cells in multiple sclerosis. Clin Exp Neuroimmunol. 2020 Aug; 11: 148–155. https://doi.org/10.1111/CEN3.12591
30. Zhang B., Lai R.C., Sim WK., et al. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like infl ammation. Int J Mol Sci. 2021 Jan 13; 22(2): 720. https://doi.org/10.3390/IJMS22020720. PMID: 33450859; PMCID: PMC7828312
31. Zhang Y., Yan J., Li Z., et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate psoriasis-like skin infl ammation. J Interferon Cytokine Res. 2022 Jan; 42(1): 8–18. https://doi.org/10.1089/JIR.2021.0146. PMID: 35041513
32. Rodrigues S.C., Cardoso R.M.S., Freire P.C., et al. Immunomodulatory properties of umbilical cord blood-derived small extracellular vesicles and their therapeutic potential for infl ammatory skin disorders. Int J Mol Sci. 2021 Sep 10; 22(18): 9797. https://doi.org/10.3390/IJMS22189797. PMID: 34575956; PMCID: PMC8468428
33. Xing Y., Li B., He J., et al. Labial gland mesenchymal stem cell derived exosomes-mediated miRNA-125b attenuates experimental Sjogren’s syndrome by targeting PRDM1 and suppressing plasma cells. Front Immunol. 2022 Apr 4; 13: 871096. https://doi.org/10.3389/fimmu.2022.871096. PMID: 35444638; PMCID: PMC9014006
34. Zhao Q., Bae E.H., Zhang Y., et al. Inhibitory effects of extracellular vesicles from iPS-cell-derived mesenchymal stem cells on the onset of sialadenitis in Sjögren’s syndrome are mediated by immunomodulatory splenocytes and improved by inhibiting miR125b. Int J Mol Sci. 2023 Mar 9 ; 24(6): 5258. https://doi.org/10.3390/ijms24065258 PMID: 36982329; PMCID: PMC10049013
35. Tong L., Zhang S., Liu Q., et al. Milk-derived extracellular vesicles protect intestinal barrier integrity in the gut-liver axis. Sci Adv. 2023 Apr 14; 9(15): eade5041. https://doi.org/10.1126/SCIADV.ADE5041. Epub 2023 Apr 12. PMID: 37043568; PMCID: PMC10096581
36. Yang L., Wang T., Zhang X., et al. Exosomes derived from human placental mesenchymal stem cells ameliorate myocardial infarction via anti-infl ammation and restoring gut dysbiosis. BMC Cardiovasc Disord. 2022 Feb 17; 22(1): 61. https://doi.org/10.1186/S12872-022-02508-W. PMID: 35172728; PMCID: PMC8851843
37. Barros C.P., Guimarães J.T., Esmerino E.A., et al. Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Curr Opin Food Sci. 2020; 32: 1–8. https://doi.org/10.1016/J.COFS.2019.12.003
38. González-Lozano E., García-García J., Gálvez J., et al. Novel horizons in postbiotics: Lactobacillaceae extracellular vesicles and their applications in health and disease. Nutrients. 2022 Dec 13; 14(24): 5296. https://doi.org/10.3390/NU14245296. PMID: 36558455; PMCID: PMC9782203
39. Hao H., Zhang X., Tong L., et al. Effect of extracellular vesicles derived from lactobacillus plantarum Q7 on gut microbiota and ulcerative colitis in mice. Front Immunol. 2021 Dec 2; 12: 777147. https://doi.org/10.3389/FIMMU.2021.777147. PMID: 34925349; PMCID: PMC8674835
40. Du C., Wang K., Zhao Y., et al. Supplementation with milk-derived extracellular vesicles shapes the gut microbiota and regulates the transcriptomic landscape in experimental colitis. Nutrients. 2022 Apr 26; 14(9): 1808. https://doi.org/10.3390/NU14091808. PMID: 35565775; PMCID: PMC9104790
41. Shaban A.M., Raslan M., Sharawi Z.W., et al. Antibacterial, antifungal, and anticancer effects of camel milk exosomes: an in vitro study. Vet Sci. 2023 Feb 6; 10(2): 124. https://doi.org/10.3390/VETSCI10020124. PMID: 36851428; PMCID: PMC9963947
42. Wajda D.A., Sosnoff J.J. Cognitive-motor interference in multiple sclerosis: a systematic review of evidence, correlates, and consequences. Biomed Res Int. 2015; 2015: 720856. https://doi.org/10.1155/2015/720856. Epub 2015 Mar 9. PMID: 25839039; PMCID: PMC4369906
43. Rutsch A., Kantsjö J.B., Ronchi F. The gut-brain axis: how microbiota and host infl ammasome infl uence brain physiology and pathology. Front Immunol. 2020 Dec 10; 11: 604179. https://doi.org/10.3389/FIMMU.2020.604179. PMID: 33362788; PMCID: PMC7758428
44. Dyńka D., Kowalcze K., Paziewska A. The role of ketogenic diet in the treatment of neurological diseases. Nutrients. 2022 Nov 24; 14(23): 5003. https://doi.org/10.3390/NU14235003. PMID: 36501033; PMCID: PMC9739023
45. Mora P., Chapouly C. Astrogliosis in multiple sclerosis and neuroinfl ammation: what role for the notch pathway? Front Immunol. 2023 Oct 23; 14: 1254586. https://doi.org/10.3389/FIMMU.2023.1254586. PMID: 37936690; PMCID: PMC10627009
46. Schauf M., Chinthapatla H., Dimri S., et al. Economic burden of multiple sclerosis in the United States: A systematic literature review. J Manag care Spec Pharm. 2023 Dec; 29(12): 1354-1368. https://doi.org/10.18553/JMCP.2023.23039. Epub 2023 Nov 17. PMID: 37976077; PMCID: PMC10776266
47. Hauser S.L., Cree B.A.C. Treatment of multiple sclerosis: a review. Am J Med. 2020 Dec; 133(12): 1380-1390.e2. https://doi.org/10.1016/J.AMJMED.2020.05.049. Epub 2020 Jul 17. PMID: 32682869; PMCID: PMC7704606
48. Baecher-Allan C., Kaskow B.J., Weiner H.L. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018 Feb 21; 97(4): 742–768. https://doi.org/10.1016/J.NEURON.2018.01.021. PMID: 29470968
49. Prajeeth C.K., Dittrich-Breiholz O., Talbot S.R., et al. IFN-γ producing Th1 cells induce different transcriptional profi les in microglia and astrocytes. Front Cell Neurosci. 2018 Oct 10; 12: 352. https://doi.org/10.3389/fncel.2018.00352. PMID: 30364000; PMCID: PMC6191492
50. Chen J., Liu X., Zhong Y. Interleukin-17A: The Key cytokine in neurodegenerative diseases. Front Aging Neurosci. 2020 Sep 29; 12: 566922. https://doi.org/10.3389/fnagi.2020.566922. PMID: 33132897; PMCID: PMC7550684
51. Yu A., Duan H., Zhang T., et al. IL-17A promotes microglial activation and neuroinfl ammation in mouse models of intracerebral haemorrhage. Mol Immunol. 2016 May; 73: 151–157. https://doi.org/10.1016/J.MOLIMM.2016.04.003. Epub 2016 Apr 22. PMID: 27107665
52. Huppert J., Closhen D., Croxford A., et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J. 2010 Apr; 24(4): 1023–1034. https://doi.org/10.1096/FJ.09-141978. Epub 2009 Nov 25. PMID: 19940258
53. Alvarez J.I., Cayrol R., Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta – Mol Basis Dis. 2011 Feb; 1812(2): 252–264. https://doi.org/10.1016/J.BBADIS.2010.06.017. Epub 2010 Jul 7. PMID: 20619340
54. Fraussen J., de Bock L., Somers V. B cells and antibodies in progressive multiple sclerosis: Contribution to neurodegeneration and progression. Autoimmun Rev. 2016 Sep; 15(9): 896–899. https://doi.org/10.1016/J.AUTREV.2016.07.008. Epub 2016 Jul 7. PMID: 27396817
55. Holloman J.P., Axtell R.C., Monson N.L., et al. The role of B Cells in primary progressive multiple sclerosis. Front Neurol. 2021 Jun 7; 12: 680581. https://doi.org/10.3389/FNEUR.2021.680581. PMID: 34163430; PMCID: PMC8215437
56. Ochoa-Reparaz J., Magori K., Kasper L.H. The chicken or the egg dilemma: intestinal dysbiosis in multiple sclerosis. Ann Transl Med. 2017 Mar; 5(6): 145. https://doi.org/10.21037/ATM.2017.01.18. PMID: 28462225; PMCID: PMC5395488
57. Gandy K.A.O., Zhang J., Nagarkatti P., et al. The role of gut microbiota in shaping the relapse-remitting and chronicprogressive forms of multiple sclerosis in mouse models. Sci Rep. 2019 May 6; 9(1): 6923. https://doi.org/10.1038/S41598-019-43356-7. PMID: 31061496; PMCID: PMC6502871
58. Parodi B., Kerlero de Rosbo N. The gut-brain axis in multiple sclerosis. Is Its dysfunction a pathological trigger or a consequence of the disease? Front Immunol. 2021 Sep 21; 12: 718220. https://doi.org/10.3389/FIMMU.2021.718220. PMID: 34621267; PMCID: PMC8490747
59. Miyake S., Kim S., Suda W., et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLoS One. 2015 Sep 14; 10(9): e0137429. https://doi.org/10.1371/JOURNAL.PONE.0137429. PMID: 26367776; PMCID: PMC4569432
60. Yadav M., Ali S., Shrode R.L., et al. Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness. PLoS One. 022 Apr 26; 17(4): e0264556. https://doi.org/10.1371/JOURNAL.PONE.0264556. PMID: 35472144; PMCID: PMC9041819
61. Chen J., Chia N., Kalari K.R., et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016 Jun 27; 6: 28484. https://doi.org/10.1038/SREP28484. PMID: 27346372; PMCID: PMC4921909
62. Nouri M., Bredberg A., Weström B., et al. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS One. 2014 Sep 3; 9(9): e106335. https://doi.org/10.1371/JOURNAL.PONE.0106335. PMID: 25184418; PMCID: PMC4153638
63. Buscarinu M.C., Cerasoli B., Annibali V., et al. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: A pilot study. Mult Scler. 2017 Mar; 23(3): 442–446. https://doi.org/10.1177/1352458516652498. Epub 2016 Jul 11. PMID: 27270497
64. Kinashi Y., Hase K. Partners in leaky gut syndrome: intestinal dysbiosis and autoimmunity. Front Immunol. 2021 Apr 22; 12: 673708. https://doi.org/10.3389/FIMMU.2021.673708. PMID: 33968085; PMCID: PMC8100306
65. Pellegrino A., Coppola G., Santopaolo F., et al. Role of Akkermansia in human diseases: from causation to therapeutic properties. Nutrients. 2023 Apr 8; 15(8): 1815. https://doi.org/10.3390/NU15081815. PMID: 37111034; PMCID: PMC10142179
66. Derrien M., Van Baarlen P., Hooiveld G., et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. 2011 Aug 1; 2: 166. https://doi.org/10.3389/FMICB.2011.00166. PMID: 21904534; PMCID: PMC3153965
67. Wu N., Li X., Ma H., et al. The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Front Neurol. 2023 Feb 1; 14: 1108738. https://doi.org/10.3389/FNEUR.2023.1108738. PMID: 36816570; PMCID: PMC9929158
68. Braniste V., Al-Asmakh M., Kowal C., et al. The gut microbiota infl uences blood-brain barrier permeability in mice. Sci Transl Med. 2014 Nov 19; 6(263): 263ra158. https://doi.org/10.1126/SCITRANSLMED.3009759. PMID: 25411471; PMCID: PMC4396848
69. Venkatesh M., Mukherjee S., Wang H., et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. Immunity. 2014 Aug 21; 41(2): 296–310. https://doi.org/10.1016/J.IMMUNI.2014.06.014. Epub 2014 Jul 24. PMID: 25065623; PMCID: PMC4142105
70. Scott S.A., Fu J., Chang P.V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2020 Aug 11; 117(32): 19376–19387. https://doi.org/10.1073/pnas.2000047117. Epub 2020 Jul 27. PMID: 32719140; PMCID: PMC7431026
71. Singh R., Chandrashekharappa S., Bodduluri S.R., et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019 Jan 9; 10(1): 89. https://doi.org/10.1038/S41467-018-07859-7. PMID: 30626868; PMCID: PMC6327034
72. Rothhammer V., Mascanfroni I.D., Bunse L., et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and CNS infl ammation via the aryl hydrocarbon receptor. Nat Med. 2016 Jun; 22(6): 586–597. https://doi.org/10.1038/NM.4106. Epub 2016 May 9. PMID: 27158906; PMCID: PMC4899206
73. Ochoa-Repáraz J., Mielcarz D.W., Wang Y., et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010 Sep; 3(5): 487–495. https://doi.org/10.1038/MI.2010.29. Epub 2010 Jun 9. PMID: 20531465
74. Hoban A.E., Stilling R.M., Ryan F.J., et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry. 2016 Apr 5; 6(4): e774. https://doi.org/10.1038/TP.2016.42. PMID: 27045844; PMCID: PMC4872400
75. Berer K., Gerdes L.A., Cekanaviciute E., et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A. 2017 Oct 3; 114(40): 10719–10724. https://doi.org/10.1073/pnas.1711233114. Epub 2017 Sep 11. PMID: 28893994; PMCID: PMC5635914
76. Cekanaviciute E., Yoo B.B., Runia T.F., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017 Oct 3; 114(40): 10713–10718. https://doi.org/10.1073/pnas.1711235114. Epub 2017 Sep 11. PMID: 28893978; PMCID: PMC5635915
77. Montgomery T.L., Künstner A., Kennedy J.J., et al. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proc Natl Acad Sci U S A. 2020 Nov 3; 117(44): 27516–27527. https://doi.org/10.1073/pnas.2002817117. Epub 2020 Oct 19. PMID: 33077601; PMCID: PMC7959502
78. Miyauchi E., Kim S.W., Suda W., et al. Gut microorganisms act together to exacerbate infl ammation in spinal cords. Nature. 2020 Sep; 585(7823): 102–106. https://doi.org/10.1038/S41586-020-2634-9. Epub 2020 Aug 26. PMID: 32848245
79. Zhang H., Yang Z., Tang K., et al. Stigmatization in patients with psoriasis: a mini review. Front Immunol. 2021 Nov 15; 12: 715839. https://doi.org/10.3389/FIMMU.2021.715839. PMID: 34867945; PMCID: PMC8634029
80. Jankowiak B., Krajewska-Kułak E., Jakoniuk M., et al. Stigmatization among patients with plaque psoriasis. J Clin Med. 2023 Oct 9; 12(19): 6425. https://doi.org/10.3390/JCM12196425. PMID: 37835068; PMCID: PMC10573936
81. Zhou X., Chen Y., Cui L., et al. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis. 2022 Jan 24; 13(1): 81. https://doi.org/10.1038/S41419-022-04523-3. PMID: 35075118; PMCID: PMC8786887
82. Goodman W.A., Levine A.D., Massari J.V., et al. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J Immunol. 2009 Sep 1; 183(5): 3170–3176. https://doi.org/10.4049/JIMMUNOL.0803721. Epub 2009 Jul 31. PMID: 19648274; PMCID: PMC2903207
83. Yang L., Li B., Dang E., et al. Impaired function of regulatory T cells in patients with psoriasis is mediated by phosphorylation of STAT3. J Dermatol Sci. 2016 Feb; 81(2): 85–92. https://doi.org/10.1016/J.JDERMSCI.2015.11.007. Epub 2015 Nov 17. PMID: 26627723
84. Harris T.J., Grosso J.F., Yen H.-R., et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17dependent autoimmunity. J Immunol. 2007 Oct 1; 179(7): 4313–4317. https://doi.org/10.4049/JIMMUNOL.179.7.4313. PMID: 17878325
85. Chen Z., Laurence A., Kanno Y., et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci USA. 2006 May 23; 103(21): 8137–8142. https://doi.org/10.1073/PNAS.0600666103. Epub 2006 May 12. PMID: 16698929; PMCID: PMC1459629
86. Gao Z., Tseng C.H., Strober B.E., et al. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008 Jul 23; 3(7): e2719. https://doi.org/10.1371/JOURNAL.PONE.0002719. PMID: 18648509; PMCID: PMC2447873
87. Fahlén A., Engstrand L., Baker B.S., et al. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012 Jan; 304(1): 15–22. https://doi.org/10.1007/S00403-011-1189-X. Epub 2011 Nov 8. PMID: 22065152
88. Boix-Amorós A., Badri M.H., Manasson J., et al. Alterations in the cutaneous microbiome of patients with psoriasis and psoriatic arthritis reveal similarities between non-lesional and lesional skin. Ann Rheum Dis. 2023 Apr; 82(4): 507–514. https://doi.org/10.1136/ARD-2022-223389. Epub 2022 Dec 12. PMID: 36600182
89. Assarsson M., Söderman J., Dienus O., et al. Signifi cant differences in the bacterial microbiome of the pharynx and skin in patients with psoriasis compared with healthy controls. Acta Derm Venereol. 2020 Sep 30; 100(16): adv00273. https://doi.org/10.2340/00015555-3619. PMID: 32852562; PMCID: PMC9234991
90. Assarsson M., Duvetorp A., Dienus O., et al. Signifi cant changes in the skin microbiome in patients with chronic plaque psoriasis after treatment with narrowband ultraviolet B. Acta Derm Venereol. 2018 Apr 16; 98(4): 428–436. https://doi.org/10.2340/00015555-2859. PMID: 29199351
91. Alekseyenko A.V., Perez-Perez G.I., Souza A. De, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013 Dec 23; 1(1): 31. https://doi.org/10.1186/2049-2618-1-31. PMID: 24451201; PMCID: PMC4177411
92. Rungjang A., Meephansan J., Payungporn S., et al. Skin microbiota profi les from tape stripping and skin biopsy samples of patients with psoriasis treated with narrowband ultraviolet B. Clin Cosmet Investig Dermatol. 2022 Aug 30; 15: 1767–1778. https://doi.org/10.2147/CCID.S374871. PMID: 36065340; PMCID: PMC9440725
93. Aslan Kayıran M., Sahin E., Koçoğlu E., et al. Is cutaneous microbiota a player in disease pathogenesis? Comparison of cutaneous microbiota in psoriasis and seborrheic dermatitis with scalp involvement. Indian J Dermatol Venereol Leprol. 2022 NovDec; 88(6): 738–748. https://doi.org/10.25259/IJDVL_323_21. PMID: 35389020
94. Loesche M.A., Farahi K., Capone K., et al. Longitudinal study of the psoriasis-associated skin microbiome during therapy with Ustekinumab in a randomized phase 3b clinical trial. J Invest Dermatol. 2018 Sep; 138(9): 1973–1981. https://doi.org/10.1016/jjid.2018.03.1501. Epub 2018 Mar 17. PMID: 29559344
95. Grice E.A., Kong H.H., Conlan S., et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009 May 29; 324(5931): 1190–1192. https://doi.org/10.1126/SCIENCE.1171700. PMID: 19478181; PMCID: PMC2805064
96. Zákostelská Z., Málková J., Klimešová K., et al. Intestinal microbiota promotes psoriasis-like skin infl ammation by enhancing Th17 response. PLoS One. 2016 Jul 19; 11(7): e0159539. https://doi.org/10.1371/JOURNAL.PONE.0159539. PMID: 27434104; PMCID: PMC4951142
97. França K. Topical probiotics in dermatological therapy and skincare: a concise review. Dermatol Ther (Heidelb). 2021 Feb; 11(1): 71–77. https://doi.org/10.1007/S13555-020-00476-7. Epub 2020 Dec 19. PMID: 33340341; PMCID: PMC7859136
98. Habeebuddin M., Karnati R.K., Shiroorkar P.N., et al. Topical probiotics: more than a skin deep. Pharmaceutics. 2022 Mar 3; 14(3): 557. https://doi.org/10.3390/PHARMACEUTICS14030557. PMID: 35335933; PMCID: PMC8955881
99. Leung D.Y.M., Travers J.B., Giorno R., et al. Evidence for a streptococcal superantigen-driven process in acute guttate psoriasis. J Clin Invest. 1995 Nov; 96(5): 2106–2112. https://doi.org/10.1172/JCI118263. PMID: 7593594; PMCID: PMC185858
100. Valdimarsson H., Baker B.S., Jónsdóttir I., et al. Psoriasis: a T-cell-mediated autoimmune disease induced by streptococcal superantigens? Immunol Today. 1995 Mar; 16(3): 145–149. https://doi.org/10.1016/0167-5699(95)80132-4. PMID: 7718088
101. Rendon A., Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019 Mar 23; 20(6): 1475. https://doi.org/10.3390/ijms20061475. PMID: 30909615; PMCID: PMC6471628
102. Hsu D.K., Fung M.A., Chen H.-L. Role of skin and gut microbiota in the pathogenesis of psoriasis, an infl ammatory skin disease. Med Microecol. 2020 June; 4: 100016. https://doi.org/10.1016/j.medmic.2020.100016
103. Kim H., Cho S.K., Kim H.W., et al. The prevalence of Sjögren’s syndrome in rheumatoid arthritis patients and their clinical features. J Korean Med Sci. 2020 Nov 23; 35(45): e369. https://doi.org/10.3346/JKMS.2020.35.E369. PMID: 33230982; PMCID: PMC7683240
104. Xu J., Chen C., Yin J., et al. Lactate-induced mtDNA accumulation activates cGAS-STING signaling and the infl ammatory response in Sjögren’s syndrome. Int J Med Sci. 2023 Aug 15; 20(10): 1256– 1271. https://doi.org/10.7150/IJMS.83801. PMID: 37786436; PMCID: PMC10542019
105. Zhan Q., Zhang J., Lin Y., et al. Pathogenesis and treatment of Sjogren’s syndrome: Review and update. Front Immunol. 2023 Feb 2; 14: 1127417. https://doi.org/10.3389/fimmu.2023.1127417. PMID: 36817420; PMCID: PMC9932901
106. Szymula A., Rosenthal J., Szczerba B.M., et al. T cell epitope mimicry between Sjögren’s syndrome Antigen A (SSA)/ Ro60 and oral, gut, skin and vaginal bacteria. Clin Immunol. 2014 May-Jun; 152(1–2): 1–9. https://doi.org/10.1016/J.CLIM.2014.02.004. Epub 2014 Feb 19. PMID: 24576620; PMCID: PMC4004658
107. Bellando-Randone S., Russo E., Venerito V., et al. Exploring the oral microbiome in rheumatic diseases, state of art and future prospective in personalized medicine with an AI approach. J Pers Med. 2021 Jun 30; 11(7): 625. https://doi.org/10.3390/JPM11070625. PMID: 34209167; PMCID: PMC8306274
108. Lee J., Alam J., Choi E., et al. Association of a dysbiotic oral microbiota with the development of focal lymphocytic sialadenitis in IκB-ζ-defi cient mice. NPJ Biofi lms Microbiomes. 2020 Oct 30; 6(1): 49. https://doi.org/10.1038/S41522-020-00158-4. PMID: 33127905; PMCID: PMC7599236
109. van der Meulen T.A., Harmsen H.J.M., Bootsma H., et al. Dysbiosis of the buccal mucosa microbiome in primary Sjögren’s syndrome patients. Rheumatology (Oxford). 2018 Dec 1; 57(12): 2225–2234. https://doi.org/10.1093/RHEUMATOLOGY/KEY215. PMID: 30060225
110. Rusthen S., Kristoffersen A.K., Young A., et al. Dysbiotic salivary microbiota in dry mouth and primary Sjögren’s syndrome patients. PLoS One. 2019 Jun 18; 14(6): e0218319. https://doi.org/10.1371/JOURNAL.PONE.0218319. PMID: 31211815; PMCID: PMC6581286
111. Zhou Z., Ling G., Ding N., et al. Molecular analysis of oral microfl ora in patients with primary Sjögren’s syndrome by using high-throughput sequencing. PeerJ. 2018 Sep 28; 6: e5649. https://doi.org/10.7717/PEERJ.5649. PMID: 30280027; PMCID: PMC6166617
112. Siddiqui H., Chen T., Aliko A., et al. Microbiological and bioinformatics analysis of primary Sjogren’s syndrome patients with normal salivation. J Oral Microbiol. 2016 Oct 20; 8: 31119. https://doi.org/10.3402/JOM.V8.31119. PMID: 27770517; PMCID: PMC5075221
113. Wang X., Pang K., Wang J., et al. Microbiota dysbiosis in primary Sjögren’s syndrome and the ameliorative effect of hydroxychloroquine. Cell Rep. 2022 Sep 13; 40(11): 111352. https://doi.org/10.1016/J.CELREP.2022.111352. PMID: 36103827
114. Alam J., Lee A., Lee J., et al. Dysbiotic oral microbiota and infected salivary glands in Sjögren’s syndrome. PLoS One. 2020 Mar 24; 15(3): e0230667. https://doi.org/10.1371/JOURNAL.PONE.0230667. PMID: 32208441; PMCID: PMC7092996
115. Zhou F., Paz H.A., Sadri M., et al. Nutrient Sensing, nutrition, and metabolism: dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. Am J Physiol – Gastrointest Liver Physiol. 2019 Nov 1; 317(5): G618–G624. https://doi.org/10.1152/AJPGI.00160.2019. Epub 2019 Sep 11. PMID: 31509432; PMCID: PMC6879888
116. Rastogi S., Singh A. Gut microbiome and human health: exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol. 2022 Oct 24; 13: 1042189. https://doi.org/10.3389/fphar.2022.1042189. PMID: 36353491; PMCID: PMC9638459
117. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol. 2008 Aug; 74(16): 4985–4996. https://doi.org/10.1128/AEM.00753-08. Epub 2008 Jun 6. PMID: 18539818; PMCID: PMC2519286
118. Dempsey E., Corr S.C. Lactobacillus spp. for gastrointestinal health: current and future perspectives. Front Immunol. 2022 Apr 6; 13: 840245. https://doi.org/10.3389/FIMMU.2022.840245. PMID: 35464397; PMCID: PMC9019120
119. De Almeida C.V., Antiga E., Lulli M. Oral and topical probiotics and postbiotics in skincare and dermatological therapy: a concise review. Microorganisms. 2023 May 27; 11(6): 1420. https://doi.org/10.3390/MICROORGANISMS11061420. PMID: 37374920; PMCID: PMC10301930
120. Gelmetti C., Rigoni C., Cantù A.M., et al. Topical prebiotics/ postbiotics and PRURISCORE validation in atopic dermatitis. International study of 396 patients. J Dermatolog Treat. 2023 Dec; 34(1): 2131703. https://doi.org/10.1080/09546634.2022.2131703. Epub 2022 Oct 17. PMID: 36205596
121. Knackstedt R., Knackstedt T., Gatherwright J. The role of topical probiotics in skin conditions: A systematic review of animal and human studies and implications for future therapies. Exp Dermatol. 2020 Jan; 29(1): 15–21. https://doi.org/10.1111/EXD.14032. Epub 2019 Sep 18. PMID: 31494971
122. Hussey G.S., Molina C.P., Cramer M.C., et al. Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials. Sci Adv. 2020 Mar 20; 6(12): eaay4361. https://doi.org/10.1126/SCIADV.AAY4361. PMID: 32219161; PMCID: PMC7083606
123. Manzaneque-López M.C., Sánchez-López C.M., Pérez-Bermúdez P., et al. Dietary-derived exosome-like nanoparticles as bacterial modulators: beyond microRNAs. Nutrients. 2023 Mar 3; 15(5): 1265. https://doi.org/10.3390/NU15051265. PMID: 36904264; PMCID: PMC10005434
124. Skowron K., Bauza-Kaszewska J., Kraszewska Z., et al. Human skin microbiome: impact of intrinsic and extrinsic factors on skin microbiota. Microorganisms. 2021 Mar 5; 9(3): 543. https://doi.org/10.3390/MICROORGANISMS9030543. PMID: 33808031; PMCID: PMC7998121
125. Quan C., Chen X.Y., Li X., et al. Psoriatic lesions are characterized by higher bacterial load and imbalance between Cutibacterium and Corynebacterium. J Am Acad Dermatol. 2020 Apr; 82(4): 955–961. https://doi.org/10.1016/J.JAAD.2019.06.024. Epub 2019 Jun 19. PMID: 31228520
126. Cros M.P., Mir-Pedrol J., Toloza L., et al. New insights into the role of Cutibacterium acnes-derived extracellular vesicles in infl ammatory skin disorders. Sci Rep. 2023 Sep 25; 13(1): 16058. https://10.1038/S41598-023-43354-W. PMID: 37749255; PMCID: PMC10520063
127. Jo C.S., Myung C.H., Yoon Y.C., et al. The effect of lactobacillus plantarum extracellular vesicles from Korean women in their 20s on skin aging. Curr Issues Mol Biol. 2022 Jan 21;44(2):526–540. https://doi.org/10.3390/CIMB44020036. PMID: 35723322; PMCID: PMC8928950
128. Zhou H., Tan X., Chen G., et al. Extracellular vesicles of commensal skin microbiota alleviate cutaneous infl ammation in atopic dermatitis mouse model by re-establishing skin homeostasis. J Invest Dermatol. 2023 Mar 11: S0022-202X(23)00169-0. https://doi.org/10.1016/J.JID.2023.02.023. Epub ahead of print. PMID: 36907322
129. Kim M.H., Choi S.J., Choi H., et al. Lactobacillus plantarumderived extracellular vesicles protect atopic dermatitis induced by Staphylococcus aureus-derived extracellular vesicles. Allergy Asthma Immunol Res. 2018 Sep; 10(5): 516–532. https://doi.org/10.4168/AAIR.2018.10.5.516. PMID: 30088371; PMCID: PMC6082821
130. Rebelo M.B., Oliveira C.S., Tavaria F.K. Novel strategies for preventing dysbiosis in the oral cavity. Front Biosci. 2023 Oct 16; 15(4): 23. https://doi.org/10.31083/j.fbe1504023. PMID: 38163934
131. Zhang Y., Ding Y., Guo Q. Probiotic species in the management of periodontal diseases: an overview. Front Cell Infect Microbiol. 2022 Mar 25; 12: 806463. https://doi.org/10.3389/FCIMB.2022.806463. PMID: 35402306; PMCID: PMC8990095
132. Bizzini B., Pizzo G., Scapagnini G., et al. Probiotics and oral health. Curr Pharm Des. 2012; 18(34): 5522–5531. https://doi.org/10.2174/138161212803307473. PMID: 22632388
133. Abikshyeet P., Mishra P., Bhuyan L., et al. Probiotics: dawn of a new era in dental caries management. J Pharm Bioallied Sci. 2022 Jul; 14(Suppl 1): S34–S38. https://doi.org/10.4103/JPBS.JPBS_801_21. Epub 2022 Jul 13. PMID: 36110745; PMCID: PMC9469361