Preview

谢切诺夫学报

高级搜索

Patellar motion and dysfunction of its stabilizers in a biomechanical model of the knee joint

https://doi.org/10.47093/2218-7332.2024.15.1.47-60

摘要

Aim. To develop a biomechanical model of the knee joint, including a detailed representation of the patellofemoral segment for the normal anatomy of bones, joints, ligaments and muscles, and study patellar movement during passive knee flexion.

Materials and methods. The architecture of the biomechanical model was developed using an open source software system for biomechanical modeling OpenSim. Patellofemoral joint with 6 degrees of freedom, patellar stabilizers – medial patellofemoral ligament (MPFL), medial patellotibial ligament (MPTL), lateral retinaculum (LR), and patellar contact surfaces (facets) were included in the model. Gmsh and Paraview were used to generate the contact surfaces. Simulations of knee passive flexion with consistent patellar stabilizers exclusion were carried out to identify their influence on patellar movement.

Results. The presented biomechanical model provides a detailed analysis of the normal dynamics of the patella and the role of different anatomical structures in its functioning and can be used for further experiments investigating of the patellar movement. The experiment involving all ligaments is consistent with the physiological norm. Disabling MPTL has minimal effects on patellar tilt and translation, which aligns with its small size. In contrast, deactivating MPFL results in increased lateral tilt and translation of the patella. Additionally, deactivation of LR components 1 and 2 induces more medial tilt and translation. Deactivating LR components 3 and 4 leads to further lateral translation and slight additional medial tilt.

Conclusion. Computational results show that all ligaments contribute to the normal movement of the patella. These findings highlight the importance of stabilizing structures in maintaining patellar stability during knee flexion.

关于作者

A. Yurova
Marchuk Institute of Numerical Mathematics
俄罗斯联邦


A. Tyagunova
Sechenov First Moscow State Medical University (Sechenov University); Sirius University
俄罗斯联邦


F. Loginov
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


Yu. Vassilevski
Marchuk Institute of Numerical Mathematics; Sechenov First Moscow State Medical University (Sechenov University); Sirius University
俄罗斯联邦


A. Lychagin
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


E. Kalinsky
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


E. Larina
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


N.  Gorohova
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


K. Devyatyarov
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


O. Bogdanov
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


I. Kovalenko
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


K. Chesnokova
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


M. Dergachev
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


E. Mychka
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


O. Kosukhin
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


参考

1. Smith B.E., Selfe J., Thacker D., et al. Incidence and prevalence of patellofemoral pain: A systematic review and meta-analysis. PLoS One. 2018 Jan 11; 13(1): e0190892. https://doi.org/10.1371/journal.pone.0190892. PMID: 29324820; PMCID: PMC5764329

2. Kamat Y., Prabhakar A., Shetty V., Naik A. Patellofemoral joint degeneration: A review of current management. J Clin Orthop Trauma. 2021 Nov 13; 24: 101690. https://doi.org/10.1016/j.jcot.2021.101690. PMID: 34900577; PMCID: PMC8636808

3. van Leeuwen G.J., de Schepper E.I.T., Bindels P.J.E., et al. Patellofemoral pain in general practice: the incidence and management. Fam Pract. 2023 Nov 23; 40(4): 589–595. https://doi.org/10.1093/fampra/cmad087. PMID: 37669000; PMCID: PMC10667070

4. Ferreira C.L., Oliveira Barroso F., Torricelli D., et al. Muscle synergies analysis shows altered neural strategies in women with patellofemoral pain during walking. PLoS One. 2023 Oct 5; 18(10): e0292464. https://doi.org/10.1371/journal.pone.0292464. PMID: 37796922; PMCID: PMC10553307

5. Barroso Rosa S., Grant A., McEwen P. Patient-reported outcome measures for patellofemoral disorders: a systematic review. Arch Orthop Trauma Surg. 2023 Jul; 143(7): 3919–3927. https://doi.org/10.1007/s00402-022-04663-3. Epub 2022 Oct 19. PMID: 36260119

6. Talbot S., Zordan R., Bennett K., et al. Quadriceps tendon malalignment is an independent anatomical deformity which is the primary abnormality associated with lateral facet patellofemoral joint osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2023 Dec; 31(12): 5950–5961. https://doi.org/10.1007/s00167-023-07661-z. Epub 2023 Nov 21. PMID: 37989778

7. Li Z., Huang C., Leung K.L., et al. Strength and passive stiffness of the quadriceps are associated with patellar alignment in older adults with knee pain. Clin Biomech (Bristol, Avon). 2023 Dec; 110: 106131. https://doi.org/10.1016/j.clinbiomech.2023.106131. Epub 2023 Oct 24. PMID: 37925827

8. Brenneis M., Junker M., Sohn R., et al. Patellar malalignment correlates with increased pain and increased synovial stress hormone levels-A cross-sectional study. PLoS One. 2023 Jul 27; 18(7): e0289298. https://doi.org/10.1371/journal.pone.0289298. PMID: 37498905; PMCID: PMC10374142

9. Elias J.J., Cosgarea A.J., Tanaka M.J. Adding tibial tuberosity medialization to medial patellofemoral ligament reconstruction reduces lateral patellar maltracking during multidirectional motion in a computational simulation model. Arthrosc Sports Med Rehabil. 2023 Jul 10; 5(4): 100753. https://doi.org/10.1016/j.asmr.2023.100753. PMID: 37645404; PMCID: PMC10461214

10. Little R.D., Smith S.E., Cicuttini F.M., et al. Association between increased signal intensity at the proximal patellar tendon and patellofemoral geometry in community-based asymptomatic middle-aged adults: a cross-sectional study. BMC Musculoskelet Disord. 2020 Aug 22; 21(1): 571. https://doi.org/10.1186/s12891-020-03589-4. PMID: 32828128; PMCID: PMC7443287

11. Hashimoto Y., Nishino K., Tomohiro T., et al. The remaining parameters of patellar instability could be affected for osteoarthritic change after medial patellofemoral ligament reconstruction with or without anteromedialization of the tibial tubercle osteotomy for patellar instability: a retrospective cohort study. BMC Musculoskelet Disord. 2023 Jan 23; 24(1): 56. https://doi.org/10.1186/s12891-022-06100-3. PMID: 36683021; PMCID: PMC9869604

12. Cerciello S., Lustig S., Costanzo G., Neyret P. Medial retinaculum reefi ng for the treatment for patellar instability. Knee Surg Sports Traumatol Arthrosc. 2014 Oct; 22(10): 2505–2512. https://doi.org/10.1007/s00167-014-3171-6. Epub 2014 Jul 25. PMID: 25059335

13. Rajagopal A., Dembia C.L., DeMers M.S., et al. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans Biomed Eng. 2016 Oct; 63(10): 2068–2079. https://doi.org/10.1109/TBME.2016.2586891. Epub 2016 Jul 7. PMID: 27392337; PMCID: PMC5507211

14. Bedo B.L.S, Catelli D.S., Lamontagne M., Santiago P.R.P. A custom musculoskeletal model for estimation of medial and lateral tibiofemoral contact forces during tasks with high knee and hip fl exions. Comput Methods Biomech Biomed Engin. 2020 Aug; 23(10): 658–663. https://doi.org/10.1080/10255842.2020.175766 2. Epub 2020 May 12. PMID: 32393120

15. Saxby D.J., Modenese L., Bryant A.L., et al. Tibiofemoral contact forces during walking, running and sidestepping. Gait Posture. 2016 Sep; 49: 78–85. https://doi.org/10.1016/j.gaitpost.2016.06.014. Epub 2016 Jun 21. PMID: 27391249

16. Lee M.R., Hicks J.L., Wren T.A.L., Delp S.L. Independently ambulatory children with spina bifi da experience near-typical knee and ankle joint moments and forces during walking. Gait Posture. 2023 Jan; 99: 1–8. https://doi.org/10.1016/j.gaitpost.2022.10.010. Epub 2022 Oct 18. PMID: 36283301; PMCID: PMC9772073

17. Adouni M., Alkhatib F., Gouissem A., Faisal T.R. Knee joint biomechanics and cartilage damage prediction during landing: A hybrid MD-FE-musculoskeletal modeling. PLoS One. 2023 Aug 3; 18(8): e0287479. https://doi.org/10.1371/journal.pone.0287479. PMID: 37535559; PMCID: PMC10399834

18. Schmitz A., Piovesan D. Development of an open-source, discrete element knee model. IEEE Trans Biomed Eng. 2016 Oct; 63(10): 2056–2067. https://doi.org/10.1109/TBME.2016.2585926. Epub 2016 Jun 28. PMID: 27362757

19. Seth A., Hicks J.L, Uchida T.K., et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol. 2018 Jul 26; 14(7): e1006223. https://doi.org/10.1371/journal.pcbi.1006223. PMID: 30048444; PMCID: PMC6061994

20. Delp S.L., Anderson F.C., Arnold A.S., et al. OpenSim: opensource software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007 Nov; 54(11): 1940–1950. https://doi.org/10.1109/TBME.2007.901024. PMID: 18018689

21. Hayden D.J., Doshi C., Parikh S.N. Lateral patellar retinaculum Z-lengthening. Arthrosc Tech. 2021 Jun 28; 10(7): e1883–e1887. https://doi.org/10.1016/j.eats.2021.04.010. PMID: 34336590; PMCID: PMC8322702

22. Frodl A., Lange T., Siegel M., et al. Individual infl uence of trochlear dysplasia on patellofemoral kinematics after isolated MPFL reconstruction. J Pers Med. 2022 Dec 12; 12(12): 2049. https://doi.org/10.3390/jpm12122049. PMID: 36556269; PMCID: PMC9786691

23. Abbaszadeh A., Saeedi M., Hoveidaei A.H., et al. Combined medial patellofemoral ligament and medial patellotibial ligament reconstruction in recurrent patellar instability: A systematic review and meta-analysis. World J Clin Cases. 2023 Jul 6; 11(19): 4625–4634. https://doi.org/10.12998/wjcc.v11.i19.4625. PMID: 37469731; PMCID: PMC10353511

24. Geuzaine C., Remacle J.-F. Gmsh: A 3-D fi nite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Engng., 2009; 79: 1309–1331. https://doi.org/10.1002/nme.2579

25. Ahrens J., Geveci B., Law C. 36 – ParaView: An end-user tool for large data visualization. Editors: Charles D. Hansen, Chris R. Johnson. The visualization handbook. Butterworth-Heinemann, 2005, 717–731. ISBN 9780123875822. https://doi.org/10.1016/B978-012387582-2/50038-1

26. Sherman M.A., Seth A., Delp S.L. Simbody: multibody dynamics for biomedical research. Procedia IUTAM. 2011; 2: 241–261. https://doi.org/10.1016/j.piutam.2011.04.023. PMID: 25866705; PMCID: PMC4390141

27. Loudon J.K. Biomechanics and pathomechanics of the patellofemoral joint. Int J Sports Phys Ther. 2016 Dec; 11(6): 820–830. PMID: 27904787; PMCID: PMC5095937

28. Mizu-Uchi H., Ma Y., Ishibashi S., et al. Tibial sagittal and rotational alignment reduce patellofemoral stresses in posterior stabilized total knee arthroplasty. Sci Rep. 2022 Jul 19; 12(1): 12319. https://doi.org/10.1038/s41598-022-15759-6. PMID: 35854017; PMCID: PMC9296446

29. Yu Z., Yao J., Wang X., et al. Research methods and progress of patellofemoral joint kinematics: a review. J Healthc Eng. 2019 Mar 24; 2019: 9159267. https://doi.org/10.1155/2019/9159267. PMID: 31019669; PMCID: PMC6451817

30. Tan S.H.S., Ngiam E.H.K., Lim J.Y., et al. Surgical management of patella alta in patellofemoral instability: a systematic review and meta-analysis. Orthop J Sports Med. 2021 Apr 21; 9(4): 2325967121999642. https://doi.org/10.1177/2325967121999642. PMID: 33997063; PMCID: PMC8072862

31. Baryeh K., Getachew F. Patella dislocation: an overview. Br J Hosp Med (Lond). 2021 Aug 2; 82(8): 1–10. https://doi.org/10.12968/hmed.2020.0429. Epub 2021 Aug 4. PMID: 34431342


补充文件

1. Table. The stiffness coefficient values for the ligaments included in the model
主题
类型 Исследовательские инструменты
下载 (755KB)    
索引源数据 ▾

评论

浏览: 1344


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)