Bone turnover markers in oral and gingival crevicular fluid in children with end-stage chronic kidney disease
https://doi.org/10.47093/2218-7332.2025.16.1.34-44
摘要
Objective. To study bone turnover markers in biological fluids (urine, blood serum, oral fluid (OF) and gingival crevicular fluid (GCF)) at the stage of planning an orthodontic strategy in children with end-stage chronic kidney disease (ESKD).
Materials and methods. Pilot, cross-sectional, multicenter study was conducted. A total of 48 children aged 7 to 17 years were examined and divided into three groups: 14 children with ESCKD, 14 children with renal transplant dysfunction (RTD), 20 almost healthy children. Bone turnover markers were assessed by changes in osteocalcin (OC) in the OF, GCF and blood serum, urinary deoxypyridinoline (DPD), levels of total, ionized calcium and phosphorus in blood and pH of OF. Bone tissue mineral density was assessed by cone-beam computerized tomography according to the C. Mish classification.
Results. All groups of children were comparable by gender and age. All patients had no significant mineral and bone disorders. Total and ionized calcium did not demonstrate statistically significant differences between the study groups. Serum phosphorus level was higher in ESCKD children compared to RTD children and control group. Urinary DPD, OC in GCF and OF pH were higher in children with CKD compared to healthy children. However, there were no statistically significant changes between the ESCKD group and the RTD group. In the posterior maxilla, the Hounsfield index was higher in the group with RTD compared to the ESCKD group (p < 0.01), and similar to the control group. In the anterior maxilla, as well as in the anterior and posterior mandibular regions, the Hounsfield index was higher in the control group than in the ESCKD and RTD groups.
Conclusion. The most prominent changes of bone turnover markers were found in children with ESCKD. Urinary DPD and OC in GCF were associated with the decrease in kidney function and jawbone mineral density.
关于作者
A. Elovskaya俄罗斯联邦
E. Maslikova
俄罗斯联邦
N. Morozova
俄罗斯联邦
N. Zakharova
俄罗斯联邦
L. Maltseva
俄罗斯联邦
E. Danilova
俄罗斯联邦
I. Shaikhattarova
俄罗斯联邦
A. Shirina
俄罗斯联邦
V. Shustova
俄罗斯联邦
O. Morozova
俄罗斯联邦
参考
1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024 Apr; 105(4S): S117–S314. https://doi.org/10.1016/j.kint.2023.10.018. PMID: 38490803
2. Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011). 2022 Apr; 12(1): 7–11. https://doi.org/10.1016/j.kisu.2021.11.003. Epub 2022 Mar 18. PMID: 35529086
3. Румянцева Е.И. Хроническая болезнь почек как глобальная проблема для общественного здоровья: динамика заболеваемости и смертности. Проблемы стандартизации в здравоохранении. 2021; 1–2: 41–49. https://doi.org/10.26347/16072502202101-02041-049. EDN: TFHKJB / Rumyantseva E.I.
4. Ахмедова E.A. Хроническая болезнь почек у детей (обзор литературы). ЖКМП. 2024; 1(1): 94–98. ISSN 2181-3531
5. Harambat J., van Stralen K.J., Kim J.J., Tizard E.J. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012 Mar; 27(3): 363–373. https://doi.org/10.1007/s00467-011-1939-1. Epub 2011 Jun 29. Erratum in: Pediatr Nephrol. 2012 Mar; 27(3): 507. PMID: 21713524
6. Borzych D., Rees L., Ha I.S., et al. The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney Int. 2010 Dec; 78(12): 1295–1304. https://doi.org/10.1038/ki.2010.316. Epub 2010 Sep 1. PMID: 20811335
7. Melo V.B., Silva D.B.D., Soeiro M.D., et al. Growth in children with chronic kidney disease and associated risk factors for short stature. J Bras Nefrol. 2024 Oct-Dec; 46(4): e20230203. https://doi.org/10.1590/2175-8239-JBN-2023-0203en. PMID: 39094068
8. Simic P. Bone and bone derived factors in kidney disease. Front Physiol. 2024 Mar 1;15:1356069. https://doi.org/10.3389/fphys.2024.1356069. PMID: 38496297
9. Карлович Н.В., Мохорт Т.В., Сазонова Е.Г. Костная патология при хронической болезни почек. Остеопороз и остеопатии. 2022; 25(1): 29–38. https://doi.org/10.14341/osteo12943 EDN: EOULOC
10. Elhusseiny G.A., Saleh W. Oral health in children with chronic kidney disease, hemodialysis, and renal transplantation: a comprehensive narrative review of the oral manifestations and dental implications. Clin Med Insights Pediatr. 2024 Aug 27; 18: 11795565241271689. https://doi.org/10.1177/11795565241271689. PMID: 39206206
11. Denburg M.R., Kumar J., Jemielita T., et al. Fracture burden and risk factors in childhood CKD: results from the CKiD cohort study. J Am Soc Nephrol. 2016 Feb; 27(2): 543–550. https://doi.org/10.1681/ASN.2015020152. Epub 2015 Jul 2. PMID: 26139439
12. Printza N., Dotis J., Sinha M.D., Leifheit-Nestler M. Editorial: Mineral and bone disorder in CKD. Front Pediatr. 2022 Feb 18; 10: 856656. https://doi.org/10.3389/fped.2022.856656. PMID: 35252071
13. Todisco T., Ubertini G.M., Bizzarri C., et al. Chronic kidney disease and growth failure in children. Children (Basel). 2024 Jul 1; 11(7): 808. https://doi.org/10.3390/children11070808. PMID: 39062256
14. Chi P.J., Hung S.Y., Hsiao F.T., et al. Serum osteocalcin concentration as an independent biomarker of osteoporosis in patients with chronic kidney disease. Clin Nephrol. 2022 Jul; 98(1): 1–9. https://doi.org/10.5414/CN110705. PMID: 35445659
15. Heimgartner N., Graf N., Frey D., et al. Predictive power of bone turnover biomarkers to estimate bone mineral density after kidney transplantation with or without denosumab: a post hoc analysis of the POSTOP study. Kidney Blood Press Res. 2020; 45(5): 758–767. https://doi.org/10.1159/000510565. Epub 2020 Sep 30. PMID: 32998144
16. Ziemińska M., Pawlak D., Sieklucka B., et al. Vitamin K-dependent carboxylation of osteocalcin in bone-ally or adversary of bone mineral status in rats with experimental chronic kidney disease? Nutrients. 2022 Oct 1; 14(19): 4082. https://doi.org/10.3390/nu14194082. PMID: 36235734
17. Tsugawa N., Shiraki M. Vitamin K Nutrition and Bone Health. Nutrients. 2020 Jun 27; 12(7): 1909. https://doi.org/10.3390/nu12071909. PMID: 32605143
18. Mohamed FF., Amadeu de Oliveira F., Kinoshita Y., et al. Dentoalveolar alterations in an adenine-induced chronic kidney disease mouse model. J Bone Miner Res. 2023 Aug; 38(8): 1192–1207. https://doi.org/10.1002/jbmr.4829. Epub 2023 May 27. PMID: 37191192
19. Lalayiannis A.D., Soeiro E.M.D., Moysés R.M.A., Shroff R. Chronic kidney disease mineral bone disorder in childhood and young adulthood: a ‘growing’ understanding. Pediatr Nephrol. 2024 Mar; 39(3): 723–739. https://doi.org/10.1007/s00467-023-06109-3. Epub 2023 Aug 25. PMID: 37624528
20. Munagala K.K., Nanda S., Chowdhary Z., et al. Severity of periodontal disease in chronic kidney disease patients: a hospitalbased study. Cureus. 2022; 14(6): e25646. Published 2022 Jun 3. https://doi.org/10.7759/cureus.25646
21. Морозова Н.С., Мамедов А.А., Лакомова Д.Ю. и др. Отдаленные изменения зубочелюстной системы крыс после экспериментальной интраабдоминальной гипертензии. Сеченовский вестник. 2021; 12(3): 38–46. https://doi.org/10.47093/2218-7332.2021.12.3.38-46. EDN: VDAIPF /
22. Морозова О.Л., Морозова Н.С., Мамедов А.А., и соавт. Изменения зубочелюстной системы у детей с хронической болезнью почек. Педиатрия им. Г.Н. Сперанского. 2018; 97(5): 104–112. https://doi.org/10.24110/0031-403X-2018-97-5-104-112. EDN: XZIRU
23. Морозова Н.С., Еловская А.А., Тимощенко Т.В. и др. Ортодонтическая реабилитация пациента с хронической болезнью почек после трансплантации. Врач, 2021; 32(10): 50–53. https://doi.org/10.29296/25877305-2021-10-09. EDN: YPDDTM
24. Misch C.E., Judy K.W. Classification of partially edentulous arches for implant dentistry. Int J Oral Implantol. 1987; 4(2): 7–13. PMID: 3269839
25. Rastogi A, Bhatt N, Rossetti S, Beto J. Management of hyperphosphatemia in end-stage renal disease: a new paradigm. J Ren Nutr. 2021 Jan; 31(1): 21–34. https://doi.org/10.1053/j.jrn.2020.02.003. Epub 2020 May 5. PMID: 32386937
26. Cseprekál O., Kis E., Dégi A.A., et al. Bone metabolism and arterial stiffness after renal transplantation. Kidney Blood Press Res. 2014; 39(6): 507–515. https://doi.org/10.1159/000368461. Epub 2014 Nov 28. PMID: 25531154
27. Bellorin-Font E., Rojas E., Martin K.J. Bone disease in chronic kidney disease and kidney transplant. Nutrients. 2022 Dec 29; 15(1): 167. https://doi.org/10.3390/nu15010167. PMID: 36615824
28. Liu J., Tio M.C., Verma A., et al. Determinants and outcomes associated with urinary calcium excretion in chronic kidney disease. J Clin Endocrinol Metab. 2022 Jan 1; 107(1): e281–e292. https://doi.org/.1210/clinem/dgab574. PMID: 34390334
29. Hasanzamani B., Karimi N., Sabbagh M.G., Majd H.M. The relationship between pre-transplant serum phosphorus before kidney transplantation with early graft dysfunction. Iran J Kidney Dis. 2021 Mar; 1(2): 148–154. PMID: 33764326
30. Coen G., Mantella D., Calabria S., et al. Urinary deoxypyridinoline excretion for the evaluation of bone turnover in chronic renal failure. Am J Nephrol. 2000 Jul-Aug; 20(4): 283–290. https://doi.org/10.1159/000013602. PMID: 10970981
31. Abdelfattah Abulfadle K., Refaat Abdelkader Atia R., Osama Mohammed H., et al. The potential anti-osteoporotic effect of exercise-induced increased preptin level in ovariectomized rats. Anat Sci Int. 2023 Jan; 98(1): 22–35. https://doi.org/10.1007/s12565-022-00666-7. Epub 2022 May 4. PMID: 35507276
32. Tavares L.T.R., Saavedra-Silva M., López-Marcos J.F., et al. Blood and salivary inflammatory biomarkers profile in patients with chronic kidney disease and periodontal disease: a systematic review. Diseases. 2022 Feb 17; 10(1): 12. https://doi.org/10.3390/diseases10010012. PMID: 35225864
33. Fadli N.A., Abdul Rahman M., Karsani S.A., Ramli R. Oral and gingival crevicular fluid biomarkers for jawbone turnover diseases: a scoping review. Diagnostics (Basel). 2024 Sep 30; 14(19): 2184. https://doi.org/10.3390/diagnostics14192184. PMID: 39410587
34. Rodrigues R.P.C.B., Vidigal M.T.C., Vieira W.A., et al. Salivary changes in chronic kidney disease and in patients undergoing hemodialysis: a systematic review and meta-analysis. J Nephrol. 2022 Jun; 35(5): 1339–1367. https://doi.org/10.1007/s40620-022-01274-4. Epub 2022 Mar 2. PMID: 35235185
补充文件
![]() |
1. STROBE Statement—Checklist | |
主题 | ||
类型 | Исследовательские инструменты | |
下载
(199KB)
|
索引源数据 ▾ |
|
2. Graphic abstract | |
主题 | ||
类型 | Research Instrument | |
预览
(145KB)
|
索引源数据 ▾ |
![]() |
3. 1170_Peer-review report | |
主题 | ||
类型 | 其他 | |
下载
(54KB)
|
索引源数据 ▾ |