Preview

谢切诺夫学报

高级搜索

Assessing 3D-modeling techniques based on a combination of positron emission tomography-and computed tomography as a means to detect tumor invasion of the paragastric tissue in gastric cancer: a pilot study

https://doi.org/10.47093/2218-7332.2025.16.2.39-51

摘要

Aim. To evaluate the diagnostic capabilities of combined positron emission tomography (PET) with accumulation of 18-fluorodeoxyglucose and computed tomography (CT) data, with additional 3D-visualization of CT DICOM files using the 3D Slicer software, in detecting tumor invasion of the paragastric tissue in locally advanced gastric cancer.
Materials and methods. A prospective open-label study was conducted as part of the research project “SmartGastro”. Four women and four men aged 51 to 81 years with a histologically confirmed diagnosis of gastric cancer underwent combined PET/CT following the “Whole Body” protocol at 60–80 minutes after the administration of the radiopharmaceutical agent (RPA). The obtained results were analyzed through visual assessment of CT and PET images separately, as well as through fused scans, followed by 3D reconstruction based on CT DICOM data. All patients underwent surgery. The resected macroscopic specimen was stepwise excised along its perimeter, followed by a histological examination of the resection margins (paragastric fat tissue). In all cases, R0 resection was confirmed, indicating radical tumor removal. The initial delineation of tumor boundaries based on PET-CT and CT imaging was compared voxel-by-voxel with the secondary delineation performed through a visual assessment of the excised macroscopic specimen.
Results. In 5 out of 8 cases, compromised peritumoral paracardial tissue detected on CT corresponded to regions of radiopharmaceutical agent uptake on PET. Areas demonstrating increased RPA accumulation in the peritumoral tissue, along with a corresponding rise in densitometric values on CT, were indicative of true invasion. This was confirmed by a histological examination of the resected specimen, in 6 out of 8 cases. The sensitivity of combined PET/CT, assessed on a voxel-by-voxel basis against postoperative pathological findings, was 0.88 (95% confidence interval (CI): 0.76–0.97), while specificity reached 0.91 (95% CI: 0.80–0.99). The discrepancy in tumor boundaries between these modalities, determined using the Hausdorff distance, was 5.2 mm, with a mean tumor size of 38×30×39 mm. Conclusion. Combined PET/CT enables the surgeon to identify precisely a compromised mesolayer adipose tissue.
The construction of 3D-models of perigastric tissues affected by the tumor process, combined with the visualization of the gastric tumor and associated vasculature, facilitates comprehensive preoperative planning for oncological surgery.

关于作者

T. Khorobrykh
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


E. Poddubskaya
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


V. Agadzhanov
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


L. Tulina
Sechenov First Moscow State Medical University (Sechenov University); PET-Technologies Nuclear Medicine Center in Moscow “Sechenov University”
俄罗斯联邦


I. Ivashov
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


A. Grachalov
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


M. Tsai
PET-Technologies Nuclear Medicine Center in Moscow “Sechenov University”
俄罗斯联邦


Ia. Drach
Bauman Moscow State Technical University
俄罗斯联邦


Z. Omarova
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


参考

1. Yang W.J., Zhao H.P., Yu Y., et al. Updates on global epidemiology, risk and prognostic factors of gastric cancer. World J Gastroenterol. 2023 Apr 28;29(16):2452–2468. https://doi.org/10.3748/wjg.v29.i16.2452. PMID: 37179585

2. Withey S.J., Goh V., Foley K.G. State-of-the-art imaging in oesophago-gastric cancer. Br J Radiol. 2022 Sep 1;95(1137):20220410. https://doi.org/10.1259/bjr.20220410. Epub 2022 Jun 15. PMID: 35671095

3. Chen Q.Y., Zhong Q., Liu Z.Y., et al. Indocyanine green fluorescence imaging-guided versus conventional laparoscopic lymphadenectomy for gastric cancer: long-term outcomes of a phase 3 randomised clinical trial. Nat Commun. 2023 Nov 16;14(1):7413. https://doi.org/10.1038/s41467-023-42712-6. PMID: 37973806

4. Ruan D., Zhao L., Cai J., et al. Evaluation of FAPI PET imaging in gastric cancer: a systematic review and metaanalysis. Theranostics. 2023 Aug 21;13(13):4694–4710. https://doi.org/10.7150/thno.88335. PMID: 37649615

5. Lordick F., Carneiro F., Cascinu S., et al. Electronic address: clinicalguidelines@esmo.org. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022 Oct;33(10):1005–1020. https://doi.org/10.1016/j.annonc.2022.07.004. Epub 2022 Jul 29. PMID: 35914639

6. López Sala P., Leturia Etxeberria M., Inchausti Iguíñiz E., et al. Gastric adenocarcinoma: A review of the TNM classification system and ways of spreading. Radiologia (Engl Ed). 2023 Jan-Feb;65(1):66–80. https://doi.org/10.1016/j.rxeng.2022.10.011. PMID: 36842787

7. Ma D., Zhang Y., Shao X., Wu C., Wu J. PET/CT for predicting occult lymph node metastasis in gastric cancer. Curr Oncol. 2022 Sep 11;29(9):6523–6539. https://doi.org/10.3390/curroncol29090513. PMID: 36135082

8. Sun J., Wang Z., Zhu H., Yang Q., Sun Y. Advanced gastric cancer: CT radiomics prediction of lymph modes metastasis after neoadjuvant chemotherapy. J Imaging Inform Med. 2024 Dec;37(6):2910–2919. https://doi.org/10.1007/s10278-024-01148-0. Epub 2024 Jun 17. PMID: 38886288

9. Awiwi M.O., Ramanan R.V., Elshikh M., Vikram R. Imaging of gastric carcinoma. Part one: diagnosis and staging. J Gastrointest Abdom Radiol. 2021;4(03):194–205. https://doi.org/10.1055/s-0041-1735217. ISSN 2581-9933

10. Shinohara H., Kurahashi Y., Haruta S., Ishida Y., Sasako M. Universalization of the operative strategy by systematic mesogastric excision for stomach cancer with that for total mesorectal excision and complete mesocolic excision colorectal counterparts. Ann Gastroenterol Surg. 2017 Oct 23;2(1):28–36. https://doi.org/10.1002/ags3.12048. PMID: 29863126

11. Shinohara H. Illustrated abdominal surgery: based on embryology and anatomy of the digestive system. 2020. https://doi.org/10.1007/978-981-15-1796-9. ISBN: 978-981-15-1795-2

12. Nakamura T., Yamada S., Funatomi T., et al. Three-dimensional morphogenesis of the omental bursa from four recesses in staged human embryos. J Anat. 2020 Jul;237(1):166–175. https://doi.org/10.1111/joa.13174. Epub 2020 Feb 16. PMID: 32064626

13. Ma T., Li X., Zhang T., et al. Effect of visceral adipose tissue on the accuracy of preoperative T-staging of gastric cancer. Eur J Radiol. 2022 Oct;155:110488. https://doi.org/10.1016/j.ejrad.2022.110488. Epub 2022 Aug 17. PMID: 35988392

14. Sok M., Zavrl M., Greif B., Srpčič M. Objective assessment of WHO/ECOG performance status. Support Care Cancer. 2019 Oct;27(10):3793–3798. https://doi.org/10.1007/s00520-018-4597-z. Epub 2019 Feb 5. PMID: 30721369

15. Fedorov A., Beichel R., Kalpathy-Cramer J., et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012 Nov;30(9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001. Epub 2012 Jul 6. PMID: 22770690

16. Mak P.H.K., Campbell R.C.H., Irwin M.G. American Society of Anesthesiologists. The ASA Physical Status Classification: interobserver consistency. American Society of Anesthesiologists. Anaesth Intensive Care. 2002 Oct;30(5):633–640. https://doi.org/10.1177/0310057X0203000516. PMID: 12413266

17. Kulig P., Pach R., Majewska O., Kulig J. Clinicopathological prognostic factors determining outcomes of treatment in gastric cancer surgery. In Vivo. 2022 Nov-Dec;36(6):2927–2935. https://doi.org/10.21873/invivo.13035. PMID: 36309397

18. Kinami S., Nakamura N., Miyashita T., et al. Life prognosis of sentinel node navigation surgery for early-stage gastric cancer: Outcome of lymphatic basin dissection. World J Gastroenterol. 2021 Dec 14;27(46):8010–8030. https://doi.org/10.3748/wjg.v27.i46.8010. PMID: 35046627

19. Ebihara Y., Kyogoku N., Murakami Y., et al. Relationship between laparoscopic total gastrectomy-associated postoperative complications and gastric cancer prognosis. Updates Surg. 2023 Jan;75(1):149–158. https://doi.org/10.1007/s13304-022-01402-6. Epub 2022 Nov 11. PMID: 36369627

20. Liu H., Wang F., Liu B., et al. Application of three-dimensional reconstruction with a Hisense computer-assisted system in upper pancreatic lymph node dissection during laparoscopic-assisted radical gastrectomy. Asian J Surg. 2021 May;44(5):730–737. https://doi.org/10.1016/j.asjsur.2020.12.034. Epub 2021 Jan 23. PMID: 33500172

21. Guo D., Zhu X.Y., Han S., Liu Y.S., Cui D.P. Evaluating the use of three-dimensional reconstruction visualization technology for precise laparoscopic resection in gastroesophageal junction cancer. World J Gastrointest Surg. 2024 May 27;16(5):1311–1319. https://doi.org/10.4240/wjgs.v16.i5.1311. PMID: 38817296

22. Iino I., Kikuchi H., Suzuki T., et al. Comprehensive evaluation of three-dimensional anatomy of perigastric vessels using enhanced multidetector-row computed tomography. BMC Surg. 2022 Nov 21;22(1):403. https://doi.org/10.1186/s12893-022-01836-0. PMID: 36404317

23. Zhang L., Zheng F., Peng Z., Hu Z., Yang Z. A feasible method of angiogenesis assessment in gastric cancer using 3D microvessel density. Stem Cells Int. 2018 Apr 3;2018:7813729. https://doi.org/10.1155/2018/7813729. PMID: 29765420

24. Черненький И.М., Черненький М.М., Фиев Д.Н., Сирота Е.С. Сегментация почечных структур по изображениям контрастной компьютерной томографии с помощью сверточной нейронной сети. Сеченовский вестник. 2023;14(1):39–49. https://doi.org/10.47093/2218-7332.2023.14.1.39-49. EDN OKTADT

25. Park S.H., Kim K.Y., Kim Y.M., Hyung W.J. Patient-specific virtual three-dimensional surgical navigation for gastric cancer surgery: A prospective study for preoperative planning and intraoperative guidance. Front Oncol. 2023 Feb 21;13: 1140175. https://doi.org/10.3389/fonc.2023.1140175. PMID: 36895483

26. Lopez P., Belgacem A., Sarnacki S., et al. Enhancing surgical planning for abdominal tumors in children through advanced 3D visualization techniques: a systematic review of future prospects. Front Pediatr. 2024 May 7;12:1386280. https://doi.org/10.3389/fped.2024.1386280. PMID: 38863523

27. Cheng J., Wang Z., Liu J., et al. Value of 3D printing technology combined with indocyanine green fluorescent navigation in complex laparoscopic hepatectomy. PLoS One. 2022 Aug 11;17(8):e0272815. https://doi.org/10.1371/journal.pone.0272815. PMID: 35951521

28. Husarova T., MacCuaig W.M., Dennahy I.S., et al. Intraoperative imaging in hepatopancreatobiliary surgery. Cancers (Basel). 2023 Jul 20;15(14):3694. https://doi.org/10.3390/cancers15143694. PMID: 37509355

29. Han Z., Dou Q. A review on organ deformation modeling approaches for reliable surgical navigation using augmented reality. Comput Assist Surg (Abingdon). 2024 Dec;29(1):2357164. https://doi.org/10.1080/24699322.2024.2357164. Epub 2024 Sep 10. PMID: 39253945

30. Wang Y., Cao D., Chen S.L., et al. Current trends in three-dimensional visualization and real-time navigation as well as robot-assisted technologies in hepatobiliary surgery. World J Gastrointest Surg. 2021 Sep 27;13(9):904–922. https://doi.org/10.4240/wjgs.v13.i9.904. PMID: 34621469

31. Kim J.W., Shin S.S., Heo S.H., et al. The role of three-dimensional multidetector CT gastrography in the preoperative imaging of stomach cancer: emphasis on detection and localization of the tumor. Korean J Radiol. 2015 Jan-Feb;16(1):80–89. https://doi.org/10.3348/kjr.2015.16.1.80. Epub 2015 Jan 9. PMID: 25598676


补充文件

1. Графический абстракт
主题
类型 Исследовательские инструменты
预览 (194KB)    
索引源数据 ▾
2. Graphic abstract
主题
类型 Исследовательские инструменты
预览 (196KB)    
索引源数据 ▾
3. Standards for Reporting Diagnostic accuracy studies
主题
类型 Исследовательские инструменты
下载 (765KB)    
索引源数据 ▾

评论

浏览: 125


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)