Preview

Sechenov Medical Journal

Advanced search

Role of mesenchymal stromal cells and their secretory products in kidney regeneration

https://doi.org/10.47093/2218-7332.2020.11.3.57-69

Abstract

Kidney diseases are an important medical problem. Kidney injuries are accompanied by oxidative stress, cell death, capillary destruction, inflammation and fibrosis. Mesenchymal stromal cells (MSCs) have a complex effect on the regeneration by producing various regulatory molecules, including those inside extracellular vesicles, and therefore are considered as a promising therapeutic resource for cell therapy of kidney diseases. Their renoprotective effect has been shown in different experimental models, but the results of the clinical trials are ambiguous. Clinical use of MSCs is complicated by their low survival rate in the injured kidney, potential immunogenicity, tumorogenicity and fibrogenicity. Cell-free therapy with the secretory products of MSCs such as conditioned environments or extracellular vesicles is a promising direction for using their regenerative potential. However, introduction of MSCs and their secretory products into medical practice requires further research into the mechanisms of their proregenerative action, improvement of cultivation protocols, and more clinical trials.

About the Authors

O. V. Payushina
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Olga V. Payushina, Dr. of Sci. (Biology), Senior Lecturer, Histology, Cytology and Embryology Department

8/2, Trubetskaya str., Moscow, 119991

+7 (926) 505-84-27



D. A. Tsomartova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Dibakhan A. Tsomartova, Cand. of Sci. (Medicine),Associate Professor, Histology, Cytology and Embryology Department

8/2, Trubetskaya str., Moscow, 119991



E. V. Chereshneva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Elizaveta V. Chereshneva, Cand. of Sci. (Medicine),Associate Professor, Histology, Cytology and Embryology Department

8/2, Trubetskaya str., Moscow, 119991



M. Yu. Ivanova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Marina Yu. Ivanova, Cand. of Sci. (Medicine), Associate Professor, Histology, Cytology and Embryology Department

8/2, Trubetskaya str., Moscow, 119991



T. A. Lomanovskaya
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Tatyana A. Lomanovskaya, Senior Lecturer, Histology, Cytology and Embryology Department

8/2, Trubetskaya str., Moscow, 119991



S. L. Kuznetsov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation
Sergey L. Kuznetsov, Dr. of Sci. (Medicine), Corresponding Member of the RAS, Professor, Head of Histology, Cytology and Embryology Department8/2, Trubetskaya str., Moscow, 119991


References

1. Pittenger MF, Discher DE, Péault BM et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019; 4: 22. DOI: 10.1038/s41536-019-0083-6

2. Packham DK, Fraser IR, Kerr PG, Segal KR. Allogeneic mesenchymal precursor cells (MPC) in diabetic nephropathy: a randomized, placebo-controlled, dose escalation study. EBioMedicine. 2016; 12: 263–9. DOI:10.1016/j.ebiom.2016.09.011

3. Saad A, Dietz AB, Herrmann SMS et al. Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease. J Am Soc Nephrol. 2017; 28(9): 2777–85. DOI: 10.1681/ASN.2017020151

4. Villanueva S, González F, Lorca E et al. Adipose tissue-derived mesenchymal stromal cells for treating chronic kidney disease: A pilot study assessing safety and clinical feasibility. Kidney Res Clin Pract. 2019; 38(2): 176–85. DOI: 10.23876/j.krcp.18.0139

5. Fan M, Zhang J, Xin H et al. Current perspectives on role of MSC in renal pathophysiology. Front Physiol. 2018; 9: 1323. DOI: 10.3389/fphys.2018.01323.

6. Peired AJ, Sisti A, Romagnani P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int. 2016; 2016: 4798639. DOI:10.1155/2016/4798639

7. Martinez-Rojas MA, Vega-Vega O, Bobadilla NA. Is the kidney a target of SARS-CoV-2? Am J Physiol Renal Physiol. 2020; 318(6): F1454–62. DOI: 10.1152/ajprenal.00160.2020

8. Ranghino A, Bruno S, Bussolati B et al. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther. 2017; 8(1): 24. DOI: 10.1186/s13287-017-0478-5

9. Ko SF, Chen YT, Wallace CG et al. Inducible pluripotent stem cell-derived mesenchymal stem cell therapy effectively protected kidney from acute ischemia-reperfusion injury. Am J Transl Res. 2018; 10(10): 3053–67

10. Ashour RH, Saad MA, Sobh MA et al. Comparative study of allogenic and xenogeneic mesenchymal stem cells on cisplatin-induced acute kidney injury in Sprague-Dawley rats. Stem Cell Res Ther. 2016; 7(1): 126. DOI: 10.1186/s13287-016-0386-0

11. Večerić-Haler Ž, Cerar A, Perše M. (Mesenchymal) stem cell-based therapy in cisplatin-induced acute kidney injury animal model: risk of immunogenicity and tumorigenicity. Stem Cells Int. 2017; 2017: 7304643. DOI: 10.1155/2017/7304643

12. Bruno S, Tapparo M, Collino F et al. Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Eng Part A. 2017; 23(21–22): 1262–73. DOI: 10.1089/ten.tea.2017.0069

13. Rota C, Morigi M, Cerullo D et al. Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Res Ther. 2018; 9(1): 220. DOI: 10.1186/s13287-018-0960-8

14. He J, Wang J, Lu X et al. Micro-vesicles derived from bone marrow stem cells protect the kidney both in vivo and in vitro by microRNA-dependent repairing. Nephrology (Carlton). 2015; 20(9): 591–600. DOI: 10.1111/nep.12490

15. Matsui F, Babitz SK, Rhee A et al. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Am J Physiol Renal Physiol. 2017; 312(1): F25–32. DOI:10.1152/ajprenal.00311.2016

16. van Koppen A, Joles JA, van Balkom BW et al. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS One. 2012; 7(6): e38746. DOI: 10.1371/journal.pone.0038746

17. Zolotukhin P.V., Belanova A.A., Lebedeva Yu.A. et al. Kletochnaya fiziologiya povrezhdeniya i vosstanovleniya pochek. Nefrologiya. 2015; 19(5): 17–22 [in Russian]

18. Kramann R, Humphreys BD. Kidney pericytes: roles in regeneration and fibrosis. Semin Nephrol. 2014; 34(4): 374–83. DOI:10.1016/j.semnephrol.2014.06.004

19. Nagaishi K, Mizue Y, Chikenji T et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep. 2016; 6: 34842. DOI:10.1038/srep34842

20. Kirpatovskiy V.I., Sokolov M.A., Rabinovich E.Z., Sivkov A.V. Kletochnye i gumoralnye mehanizmy regeneracii pochki. Eksperimental’naya i klinicheskaya urologiya. 2017; (2): 102–11 [in Russian]

21. Shankland SJ, Pippin JW, Duffield JS. Progenitor cells and podocyte regeneration. Semin Nephrol. 2014; 34(4): 418–28. DOI: 10.1016/j.semnephrol.2014.06.008

22. Zhou D, Fu H, Liu S et al. Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB J. 2019; 33(11): 12576–87. DOI:10.1096/fj.201900651RR

23. Schiessl IM, Grill A, Fremter K et al. Renal interstitial platelet-derived growth factor receptor-β cells support proximal tubular regeneration. J Am Soc Nephrol. 2018; 29(5): 1383–96. DOI:10.1681/ASN.2017101069

24. Dekel B, Zangi L, Shezen E et al. Isolation and characterization of nontubular Sca-1+Lin- multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol. 2006; 17(12): 3300–14. DOI:10.1681/ASN.2005020195

25. Plotkin MD, Goligorsky MS. Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts. Am J Physiol Renal Physiol. 2006; 291(4): F902–12. DOI:10.1152/ajprenal.00396.2005

26. Wang H, Gomez JA, Klein S et al. Adult renal mesenchymal stem cell-like cells contribute to juxtaglomerular cell recruitment. J Am Soc. Nephrol. 2013; 24(8): 1263–73. DOI: 10.1681/ASN.2012060596

27. Jiang MH, Li G, Liu J et al. Nestin(+) kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury. Biomaterials. 2015; 50: 56–66. DOI: 10.1016/j.biomaterials.2015.01.029

28. Bruno S, Bussolati B, Grange C et al. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev. 2009; 18(6): 867–80. DOI:10.1089/scd.2008.0320

29. Park H-C, Yasuda K, Kuo M-C et al. Renal capsule as a stem cell niche. Am J Physiol Renal Physiol. 2010; 298(5): F1254–62. DOI: 10.1152/ajprenal.00406.2009

30. Herrera MB, Bussolati B, Bruno S et al. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int. 2007; 72(4): 430–41. DOI:10.1038/sj.ki.5002334

31. Yu X, Lu C, Liu H et al. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One. 2013; 8(5): e62703. DOI: 10.1371/journal.pone.0062703

32. Si XY, Li JJ, Yao T, Wu XY. Transforming growth factor-β1 in the microenvironment of ischemia reperfusion-injured kidney enhances the chemotaxis of mesenchymal stem cells to stromal cell-derived factor-1 through upregulation of surface chemokine (C-X-C motif) receptor 4. Mol Med Rep. 2014; 9(5): 1794–8. DOI:10.3892/mmr.2014.1989

33. Machiguchi T, Nakamura T. Nephron generation in kidney cortices through injection of pretreated mesenchymal stem cell-differentiated tubular epithelial cells. Biochem Biophys Res Commun. 2019; 518(1): 141–7. DOI:10.1016/j.bbrc.2019.08.022

34. Chen J, Park HC, Addabbo F et al. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 2008; 74(7): 879–89. DOI:10.1038/ki.2008.304

35. Park JH, Jang HR, Kim DH et al. Early, but not late, treatment with human umbilical cord blood-derived mesenchymal stem cells attenuates cisplatin nephrotoxicity through immunomodulation. Am J Physiol Renal Physiol. 2017; 313(4): F984–96. DOI:10.1152/ajprenal.00097.2016

36. Chen L, Xiang E, Li C et al. Umbilical cord-derived mesenchymal stem cells ameliorate nephrocyte injury and proteinuria in a diabetic nephropathy rat model. J Diabetes Res. 2020; 2020: 8035853. DOI: 10.1155/2020/8035853

37. Zhao L, Hu C, Zhang P et al. Mesenchymal stem cell therapy targeting mitochondrial dysfunction in acute kidney injury. J Transl Med. 2019; 17(1): 142. DOI:10.1186/s12967-019-1893-4

38. Zou X, Jiang K, Puranik AS et al. Targeting murine mesenchymal stem cells to kidney injury molecule-1 improves their therapeutic efficacy in chronic ischemic kidney injury. Stem Cells Transl Med. 2018; 7(5): 394–403. DOI: 10.1002/sctm.17-0186

39. Li H, Rong P, Ma X et al. Mouse umbilical cord mesenchymal stem cell paracrine alleviates renal fibrosis in diabetic nephropathy by reducing myofibroblast transdifferentiation and cell proliferation and upregulating MMPs in mesangial cells. J Diabetes Res. 2020; 2020: 3847171. DOI: 10.1155/2020/3847171

40. Broekema M, Harmsen MC, van Luyn MJ et al. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol. 2007; 18(1): 165–75. DOI:10.1681/ASN.2005070730

41. Kim JS, Lee JH, Kwon O et al. Rapid deterioration of preexisting renal insufficiency after autologous mesenchymal stem cell therapy. Kidney Res Clin Pract. 2017; 36(2): 200–4. DOI: 10.23876/j.krcp.2017.36.2.200

42. Zhao L, Hu C, Zhang P et al. Preconditioning strategies for improving the survival rate and paracrine ability of mesenchymal stem cells in acute kidney injury. J Cell Mol Med. 2019; 23(2): 720–30. DOI:10.1111/jcmm.14035

43. Swaminathan M, Stafford-Smith M, Chertow GM et al. Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J Am Soc Nephrol. 2018; 29(1): 260–7. DOI: 10.1681/ASN.2016101150

44. Deng D, Zhang P, Guo Y, Lim TO. A randomised double-blind, placebo-controlled trial of allogeneic umbilical cord-derived mesenchymal stem cell for lupus nephritis. Ann Rheum Dis. 2017; 76(8): 1436–9. DOI:10.1136/annrheumdis-2017-211073

45. Makhlough A, Shekarchian S, Moghadasali R et al. Safety and tolerability of autologous bone marrow mesenchymal stromal cells in ADPKD patients. Stem Cell Res Ther. 2017; 8(1): 116. DOI: 10.1186/s13287-017-0557-7

46. Zhang B, Tian X, Hao J et al. Mesenchymal stem cell-derived extracellular vesicles in tissue regeneration. Cell Transplant. 2020; 29: 963689720908500. DOI:10.1177/0963689720908500

47. Zhang G, Wang D, Miao S et al. Extracellular vesicles derived from mesenchymal stromal cells may possess increased therapeutic potential for acute kidney injury compared with conditioned medium in rodent models: A meta-analysis. Exp Ther Med. 2016; 11(4): 1519–25. DOI: 10.3892/etm.2016.3076

48. Eirin A, Zhu XY, Jonnada S et al. Mesenchymal stem cell-derived extracellular vesicles improve the renal microvasculature in metabolic renovascular disease in swine. Cell Transplant. 2018; 27(7): 1080–95. DOI:10.1177/0963689718780942

49. Nassar W, El-Ansary M, Sabry D et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res. 2016; 20: 21. DOI: 10.1186/s40824-016-0068-0

50. Tsuji K, Kitamura S, Wada J. Immunomodulatory and regenerative effects of mesenchymal stem cell-derived extracellular vesicles in renal diseases. Int J Mol Sci. 2020; 21(3): 756. DOI:10.3390/ijms21030756


Review

Views: 1641


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)