VEGF-C(血管内皮生长因子C) 在腹内高压模拟实验中的肾脏损伤生物标记物
https://doi.org/10.47093/2218-7332.2020.11.3.47-56
摘要
摘要
淋巴管新生在肾损伤时肾实质炎症过程的发展中扮演着重要的角色。血管内皮生长因子C(VEGF-C)是调节淋巴管新生的细胞因子,因而是具有潜力的急性肾损伤的早期生物标记物。
目的
利用新生鼠模拟实验,研究在严重程度和持续时间不同的腹内高压(IAH)背景下VEGF-C在肾脏匀浆和血清中的浓度,并确定其与肾实质形态学变化的相互关系。
材料和方法
实验在50只新生实验白鼠进行。实验鼠分为5组,每组10只:第1组和第2组伴有轻度的腹内高压,持续时间分别为5天和10天。第3组和第4组有严重的腹内高压,持续时间分别为5天和10天。第5组为对照组。通过在膀胱测压法的控制下将无菌凡士林注射入腹腔至预定水平的腹内高压来对其进行模拟。VEGF-C含量通过酵素结合免疫吸附分析法(ELISA,Enzyme-linked immunosorbent assay) 测量。使用徕卡DM2000显微镜对活检材料进行形态学研究并照相。使用曼-惠特尼U检验Mann-Whitney,克鲁斯卡尔-沃利斯检验(Kruskal-Wallis),威尔科克森符号秩检验Wilcoxon以及单向方差分析ANOVA来进行统计分析。
结果
所有组的肾脏匀浆中的VEGF-C水平均升高(pc < 0.001); VEGF-C增加的程度取决于腹内高压的严重程度(p < 0,05),而不取决于腹内高压的持续时间。VEGF-C血清水平仅在第3组增加(pc = 0.011)。形态学上观察到水肿性变性:肾小管上皮的高度改变,间质性水肿增加重,肾小球的尿路扩张。肾实质形态变化的程度取决于腹内高压的严重程度和持续时间。
结论
在严重程度及持续时间各异的腹内高压背景下,实验白鼠的肾实质形态学变化与肾脏匀浆中的VEGF-C水平变化存在关联性。
关于作者
V. V. Iakovlev俄罗斯联邦
A. V. Badaeva
俄罗斯联邦
E. I. Ivanova
俄罗斯联邦
L. O. Severgina
俄罗斯联邦
L. D. Maltseva
俄罗斯联邦
O. L. Morozova
俄罗斯联邦
参考
1. Rauniyar K., Jha S.K., Jeltsch M. Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels. Front Bioeng Biotechnol. 2018; 6: 7. https://doi.org/10.3389/fbioe.2018.00007 PMID: 29484295
2. Veikkola T., Jussila L., Makinen T., et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 2001; 20(6): 1223–31. https://doi.org/10.1093/emboj/20.6.1223 PMID: 11250889
3. Mäkinen T., Veikkola T., Mustjoki S., et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 2001; 20(17): 4762–73. https://doi.org/10.1093/emboj/20.17.4762 PMID: 11532940
4. Huggenberger R., Ullmann S., Proulx S.T., et al. Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J Exp Med. 2010; 207(10): 2255–69. https://doi.org/10.1084/jem.20100559 PMID: 20837699
5. Hamada K., Oike Y., Takakura N., et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood. 2000; 96(12): 3793–800. https://doi.org/10.1182/blood.V96.12.3793 PMID: 11090062
6. Kim H., Kataru R.P., Koh G.Y. Inflammation-associated lymphangiogenesis: a double-edged sword? J Clin Invest. 2014; 124(3): 936–42. https://doi.org/10.1172/JCI71607 PMID: 24590279
7. Onimaru M., Yonemitsu Y., Fujii T., et al. VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol. 2009; 297(5): H1685–96. https://doi.org/10.1152/ajpheart.00015.2009 PMID: 19734356
8. Lee A.S., Lee J.E., Jung Y.J., et al. Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction. Kidney Int. 2013; 83(1): 50–62. https://doi.org/10.1016/j.kint.2017.07.006 PMID: 28938942
9. Hasegawa S., Nakano T., Torisu K., et al. Vascular endothelial growth factor-C ameliorates renal interstitial fibrosis through lymphangiogenesis in mouse unilateral ureteral obstruction. Lab Invest. 2017; 97(12): 1439–52. https://doi.org/10.1016/j.kint.2017.07.00610.1038/labinvest.2017.77 PMID: 29083411
10. Chang X., Yang Q., Zhang C., et al. Roles for VEGF-C/NRP-2 axis in regulating renal tubular epithelial cell survival and autophagy during serum deprivation. Cell Biochem Funct. 2019; 37(4): 290– 300. https://doi.org/10.1002/cbf.3402 PMID: 31211440
11. Zarjou A., Black L.M., Bolisetty S., et al. Dynamic signature of lymphangiogenesis during AKI and CKD. Lab Invest. 2019; 99(9): 1376–88. https://doi.org/10.1038/s41374-019-0259-0 PMID: 31019289
12. Kirkpatrick A.W., Roberts D.J., De Waele J., et al. Intraabdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013; 39(7): 1190–206. https://doi.org/10.1007/s00134-013-2906-z PMID: 23673399
13. Thabet F.C., Bougmiza I.M., Chehab M.S., et al. Incidence, Risk Factors, and Prognosis of Intra-Abdominal Hypertension in Critically Ill Children: A Prospective Epidemiological Study. J Intensive Care Med. 2016; 31(6): 403–8. https://doi.org/10.1177/0885066615583645 PMID: 25922384
14. Steinau G., Kaussen T., Bolten B., et al. Abdominal compartment syndrome in childhood: diagnostics, therapy and survival rate. Pediatr Surg Int. 2011; 27(4): 399–405. https://doi.org/10.1007/s00383-010-2808-x PMID: 21132501
15. Kaussen T., Steinau G., Srinivasan P., et al. Recognition and management of abdominal compartment syndrome among German pediatric intensivists: results of a national survey. Ann Intensive Care. 2012; 2 Suppl 1(Suppl 1): S8. https://doi.org/10.1186/2110-5820-2-S1-S8 PMID: 22873424
16. Vidal M.G., Ruiz Weisser J., Gonzalez F., et al. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit Care Med. 2008; 36(6): 1823–31. https://doi.org10.1097/CCM.0b013e31817c7a4d PMID: 18520642
17. De Waele J., Desender L., De Laet I., et al. Abdominal decompression for abdominal compartment syndrome in critically ill patients: a retrospective study. Acta Clin Belg. 2010; 65(6): 399– 403. https://doi.org/10.1179/acb.2010.65.6.005 PMID: 21268953
18. Carr J.A. Abdominal compartment syndrome: a decade of progress. J Am Coll Surg. 2013; 216(1): 135–46. https://doi.org/10.1016/j.jamcollsurg.2012.09.004 PMID: 23062520
19. Ejike J.C., Humbert S., Bahjri K., Mathur M. Outcomes of children with abdominal compartment syndrome. Acta Clin Belg. 2007; 62 Suppl 1: 141–8. https://doi.org/10.1179/acb.2007.62. s1.018 PMID: 17469712
20. Pearson E.G., Rollins M.D., Vogler S.A., et al. Decompressive laparotomy for abdominal compartment syndrome in children: before it is too late. J Pediatr Surg. 2010; 45(6): 1324–9. https://doi.org/10.1016/j.jpedsurg.2010.02.107 PMID: 20620339
21. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US); 2011. https://doi.org/10.17226/12910 PMID: 21595115
22. Kinashi H., Falke L.L., Nguyen T.Q., et al. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis. Kidney Int. 2017; 92(4): 850–63. https://doi.org/10.1016/j.kint.2017.03.029 PMID: 28545716
23. Beaini S., Saliba Y., Hajal J., et al. VEGF-C attenuates renal damage in salt-sensitive hypertension. J Cell Physiol. 2019; 234(6): 9616–30. https://doi.org/10.1002/jcp.27648 PMID: 30378108
24. Joory K.D, Levick J.R., Mortimer P.S., Bates D.O. Vascular endothelial growth factor-C (VEGF-C) expression in normal human tissues. Lymphat Res Biol. 2006; 4(2): 73–82. https://doi.org/10.1089/lrb.2006.4.73 PMID: 16808669
25. Divarci E., Karapinar B., Yalaz M., et al. Incidence and prognosis of intraabdominal hypertension and abdominal compartment syndrome in children. J Pediatr Surg. 2016; 51(3): 503–7. https://doi.org/10.1016/j.jpedsurg.2014.03.014 PMID:25783342
26. Villa G., Samoni S., De Rosa S., Ronco C. The Pathophysiological Hypothesis of Kidney Damage during Intra-Abdominal Hypertension. Front Physiol. 2016 Feb 23; 7: 55. https://doi.org/10.3389/fphys.2016.00055 PMID: 26941652
27. Köşüm A., Borazan E., Maralcan G., Aytekin A. Biochemical and histopathological changes of intra-abdominal hypertension on the kidneys: Experimental study in rats. Ulus Cerrahi Derg. 2013; 29(2): 49–53. https://doi.org/5152/UCD.2013.39 PMID: 25931845
28. Chang Y., Qi X., Li Z., et al. Hepatorenal syndrome: insights into the mechanisms of intra-abdominal hypertension. Int J Clin Exp Pathol. 2013; 6(11): 2523–8. PMID: 24228115
29. Morozov D., Morozova O., Pervouchine D., et al. Hypoxic renal injury in newborns with abdominal compartment syndrome (clinical and experimental study). Pediatr Res. 2018; 83(2): 520–6. https://doi.org/10.1038/pr.2017.263 PMID: 29053704