Preview

Sechenov Medical Journal

Advanced search

Hereditary predisposition to kidney cancer: cancer syndromes, multisystemic disorders, and nephropathies

https://doi.org/10.47093/2218-7332.2023.14.2.5-20

Abstract

Kidney cancer (KC) is a common disease characterized by extreme heterogeneity. There are nine known monogenic diseases associated with a significantly elevated KC risk: von Hippel-Lindau disease, MET-associated papillary renal cancer, familial multiple leiomyomatosis and renal cell cancer, SDHx-associated familial pheochromocytoma/ paraganglioma, Birt-Hogg-Dube syndrome, tuberous sclerosis, Cowden syndrome, BAP1- and MITF-associated melanoma-KC predisposition. These syndromes differ in the degree of cancer risk, the quantity, growth and progression rates of associated precancerous lesions, the morphology, and clinical presentations of malignancy itself, and in the response to therapy. Identification of causative germline lesion allows planning the surveillance of a mutation carrier, choosing the right time and extent of surgery, and optimizing treatment regimen. Hereditary KC research often brings forward novel approaches to the management of sporadic “phenocopies” of hereditary syndromes, i.e. sporadic cancers with somatic mutations in similar genes. The main directions for further study of genetic factors of KC are to find novel KC genes, to study risk modifiers in carriers of highly penetrant mutations, to clarify the involvement of hereditary nephropathies in the occurrence of renal cancers.

About the Authors

G. A. Yanus
NMRC of Oncology named after N.N. Petrov; St. Petersburg State Pediatric Medical University
Russian Federation

Grigory A. Yanus, Cand. of Sci. (Medicine), Researcher, Laboratory of Molecular Oncology; Researcher, Laboratory of Molecular Diagnostics with an extended group of Ecogenetics

68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758

2, Litovskaya str., Saint Petersburg, 194100



A. G. Iyevleva
NMRC of Oncology named after N.N. Petrov; St. Petersburg State Pediatric Medical University
Russian Federation

Aglaya G. Iyevleva, Cand. of Sci. (Medicine), Senior Researcher, Laboratory of Molecular Oncology; Associate Professor, Department of General and Molecular Medical Genetics

68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758

2, Litovskaya str., Saint Petersburg, 194100



E. N. Suspitsin
NMRC of Oncology named after N.N. Petrov; St. Petersburg State Pediatric Medical University
Russian Federation

Evgeny N. Suspitsin, Cand. of Sci. (Medicine), Senior Researcher, Laboratory of Molecular Oncology; Associate Professor, Department of General and Molecular Medical Genetics

68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758

2, Litovskaya str., Saint Petersburg, 194100



A. V. Tumakova
St. Petersburg State Pediatric Medical University
Russian Federation

Anastasia V. Tumakova, Acting Head of the Laboratory of Molecular Diagnostics with an extended group of Ecogenetics

2, Litovskaya str., Saint Petersburg, 194100



E. V. Belogubova
NMRC of Oncology named after N.N. Petrov
Russian Federation

Evgenia V. Belogubova, Cand. of Sci. (Biology), Junior Researcher, Laboratory of Molecular Oncology

68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758



S. N. Aleksakhina
NMRC of Oncology named after N.N. Petrov
Russian Federation

Svetlana N. Aleksakhina, Cand. of Sci. (Biology), Senior Researcher, Laboratory of Molecular Oncology

68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758



A. V. Togo
NMRC of Oncology named after N.N. Petrov
Russian Federation

Alexandr V. Togo, Cand. of Sci. (Biology), Leading Researcher, Laboratory of Molecular Oncology

68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758



E. N. Imyanitov
NMRC of Oncology named after N.N. Petrov; St. Petersburg State Pediatric Medical University; North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Evgeny N. Imyanitov, Doctor of Sci. (Medicine), Professor, corresponding member of the RAS, Head of the Scientific Department of Tumor Growth Biology; Head of the Department of General and Molecular Medical Genetics; Professor, Department of Oncology

68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758

+7 (901) 302-37-07



References

1. Ghosn M., Kattan J., Karak F.E., et al. Renal cell carcinoma mana gement: real-world practice and challenges at a national level. Future Oncol. 2023 May 17. https://doi.org/10.2217/fon-2021-1189. Online ahead of print. PMID: 37194701

2. Mucci L.A., Hjelmborg J.B., Harris J.R., et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA. 2016; 315(1): 68–76. https://doi.org/10.1001/jama.2015.17703. PMID: 26746459

3. Kallinikas G., Habib H., Tsimiliotis D., et al. Renal cell cancers: unveiling the hereditary ones and saving lives-a tailored diagnostic approach. Int Urol Nephrol. 2017; 49(9): 1507–1512. https://doi.org/10.1007/s11255-017-1625-8. PMID: 28567709

4. Carlo M.I., Mukherjee S., Mandelker D., et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol. 2018; Sep 1; 4(9): 1228–1235. https://doi.org/10.1001/jamaoncol.2018.1986. PMID: 29978187

5. Kong W., Yang T., Wen X., et al. Germline mutation landscape and associated clinical characteristics in Chinese patients with renal cell carcinoma. Front Oncol. 2021; Dec 2; 11: 737547. https://doi.org/10.3389/fonc.2021.737547. PMID: 34926252

6. Motzer R.J., Jonasch E., Agarwal N., et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022; Jan; 20(1): 71–90. https://doi.org/10.6004/jnccn.2022.0001. PMID: 34991070

7. Cancer Genome Atlas Research Network, Linehan W.M., Spellman P.T., et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016; Jan 14; 374(2): 135–145. https://doi.org/10.1056/NEJMoa1505917. PMID: 26536169

8. Moch H., Amin M.B., Berney D.M., et al. The 2022 World Health Organization classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol. 2022; Nov; 82(5): 458–468. https://doi.org/10.1016/j.eururo.2022.06.016. PMID: 35853783

9. Choueiri T.K., Bauer T.M., Papadopoulos K.P., et al. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat Med. 2021; May; 27(5): 802–805. https://doi.org/10.1038/s41591-021-01324-7. PMID: 33888901

10. Jonasch E., Donskov F., Iliopoulos O., et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N Engl J Med. 2021; Nov 25; 385(22): 2036-2046. https://doi.org/10.1056/NEJMoa2103425. PMID: 34818478

11. Bratslavsky G., Mendhiratta N., Daneshvar M., et al. Genetic risk assessment for hereditary renal cell carcinoma: Clinical consensus statement. Cancer. 2021; Nov 1; 127(21): 3957–3966. https://doi.org/10.1002/cncr.33679. PMID: 34343338

12. Latif F., Tory K., Gnarra J., et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993; May 28; 260(5112): 1317–1320. https://doi.org/10.1126/science.8493574. PMID: 8493574

13. Binderup M.L.M., Galanakis M., Budtz-Jørgensen E., et al. Prevalence, birth incidence, and penetrance of von Hippel-Lindau disease (vHL) in Denmark. Eur J Hum Genet. 2017; Feb; 25(3): 301–307. https://doi.org/10.1038/ejhg.2016.173. PMID: 27966541

14. Crespigio J., Berbel L.C.L., Dias M.A., et al. Von Hippel-Lindau disease: a single gene, several hereditary tumors. J Endocrinol Invest. 2018; Jan; 41(1): 21–31. https://doi.org/10.1007/s40618-017-0683-1. PMID: 28589383

15. Kruizinga R.C., Sluiter W.J., de Vries E.G., et al. Calculating optimal surveillance for detection of von Hippel-Lindau-related manifestations. Endocr Relat Cancer. 2013; Dec 20; 21(1): 63–71. https://doi.org/10.1530/ERC-13-0308. PMID: 24132471

16. Chen F., Kishida T., Yao M., et al. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat. 1995; 5(1): 66–75. https://doi.org/10.1002/humu.1380050109. PMID: 7728151

17. Reich M., Jaegle S., Neumann-Haefelin E., et al. Genotypephenotype correlation in von Hippel-Lindau disease. Acta Ophthalmol. 2021; Dec; 99(8): e1492–e1500. https://doi.org/10.1111/aos.14843. PMID: 33720516

18. Chiorean A., Farncombe K.M., Delong S., et al. Large scale genotype- and phenotype-driven machine learning in von Hippel-Lindau disease. Hum Mutat. 2022; Sep; 43(9): 1268–1285. https://doi.org/10.1002/humu.24392. PMID: 35475554

19. Koeller D.R., Manning D.K., Schwartz A., et al. An optimized protocol for evaluating pathogenicity of VHL germline variants in patients suspected with von Hippel-Lindau syndrome: Using somatic genome to inform the role of germline variants. MethodsX. 2022; Jun 18; 9: 101761. https://doi.org/10.1016/j.mex.2022.101761.eCollection 2022. PMID: 35774415

20. McNeill A., Rattenberry E., Barber R., et al. Genotype-phenotype correlations in VHL exon deletions. Am J Med Genet A. 2009; Oct; 149A(10): 2147–2151. https://doi.org/10.1002/ajmg.a.33023. PMID: 19764026

21. Chomette L., Migeotte I., Dewachter C., et al. Early-onset and severe pulmonary arterial hypertension due to a novel compound heterozygous association of rare VHL mutations: A case report and review of existing data. Pulm Circ. 2022; Apr 1; 12(2): e12052. https://doi.org/10.1002/pul2.12052. PMID: 35734542

22. Ang S.O., Chen H., Hirota K., et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002; Dec; 32(4): 614–621. https://doi.org/10.1038/ng1019. PMID: 12415268

23. Binderup M.L., Jensen A.M., Budtz-Jørgensen E., Bisgaard M.L. Survival and causes of death in patients with von Hippel-Lindau disease. J Med Genet. 2017; Jan; 54(1): 11–18. https://doi.org/10.1136/jmedgenet-2016-104058. PMID: 27539272

24. Lonser R.R., Butman J.A., Huntoon K., et al. Prospective natural history study of central nervous system hemangioblastomas in von Hippel-Lindau disease. J Neurosurg. 2014; May; 120(5): 1055–1062. https://doi.org/10.3171/2014.1.JNS131431. PMID: 24579662

25. Ball M.W., An J.Y., Gomella P.T., et al. Growth rates of genetically defined renal tumors: implications for active surveillance and intervention. J Clin Oncol. 2020; Apr 10; 38(11): 1146–1153. https://doi.org/10.1200/JCO.19.02263. PMID: 32083993

26. Walther M.M., Choyke P.L., Glenn G., et al. Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol. 1999; May; 161(5): 1475–1479. https://doi.org/10.1016/s0022-5347(05)68930-6. PMID: 10210376

27. Binderup L.M., Smerdel M., Borgwadt L., et al. von Hippel-Lindau disease: updated guideline for diagnosis and surveillance. Eur J Med Genet. 2022; Aug; 65(8): 104538. https://doi.org/10.1016/j.ejmg.2022.104538. PMID: 35709961

28. Gossage L., Eisen T., Maher E.R. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015; Jan; 15(1): 55–64. https://doi.org/10.1038/nrc3844. PMID: 25533676

29. Kaelin W.G. Jr. Von Hippel-Lindau disease: insights into oxygen sensing, protein degradation, and cancer. J Clin Invest. 2022; Sep 15; 132(18): e162480. https://doi.org/10.1172/JCI162480. PMID: 36106637

30. Choueiri T.K., Kaelin W.G. Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med. 2020; Oct; 26(10): 1519–1530. https://doi.org/10.1038/s41591-020-1093-z. PMID: 33020645

31. Fallah J., Brave M.H., Weinstock C., et al. FDA approval summary: belzutifan for von Hippel-Lindau disease-associated tumors. Clin Cancer Res. 2022; Nov 14; 28(22): 4843–4848. https://doi.org/10.1158/1078-0432.CCR-22-1054. PMID: 35727604

32. Schmidt L., Duh F.M., Chen F., et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997; May; 16(1): 68–73. https://doi.org/10.1038/ng0597-68. PMID: 9140397

33. Schmidt L., Junker K., Nakaigawa N., et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999 Apr 8; 18(14): 2343–2350. https://doi.org/10.1038/sj.onc.1202547. PMID: 10327054

34. Adlard J. Multiple primary cancers (renal papillary, lymphoma and teratoma) and hepatic cysts in association with a pathogenic germline mutation in the MET gene. Fam Cancer. 2021; Jan; 20(1): 81–83. https://doi.org/10.1007/s10689-020-00196-z. PMID: 32686009

35. Sebai M., Tulasne D., Caputo S.M., et al. Novel germline MET pathogenic variants in French patients with papillary renal cell carcinomas type I. Hum Mutat. 2022; Mar; 43(3): 316–327. https://doi.org/10.1002/humu.24313. PMID: 34882875

36. Lubensky I.A., Schmidt L., Zhuang Z., et al. Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol. 1999; Aug; 155(2): 517–526. https://doi.org/10.1016/S0002-9440(10)65147-4. PMID: 10433944

37. Denize T., Just P.A., Sibony M., et al. MET alterations in biphasic squamoid alveolar papillary renal cell carcinomas and clinicopathological features. Mod Pathol. 2021; Mar; 34(3): 647–659. https://doi.org/10.1038/s41379-020-0645-6. PMID: 32770124

38. Choueiri T.K., Heng D.Y.C., Lee J.L., et al. Efficacy of savolitinib vs sunitinib in patients with MET-driven papillary renal cell carcinoma: The SAVOIR phase 3 randomized clinical trial. JAMA Oncol. 2020; Aug 1; 6(8): 1247–1255. https://doi.org/10.1001/jamaoncol.2020.2218. PMID: 32469384

39. Launonen V., Vierimaa O., Kiuru M., et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci USA. 2001; Mar 13; 98(6): 3387–3392. https://doi.org/10.1073/pnas.051633798. PMID: 11248088

40. Ooi A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin Cancer Biol. 2020; Apr; 61: 158–166. https://doi.org/10.1016/j.semcancer.2019.10.016. PMID: 31689495

41. Crooks D.R., Maio N., Lang M., et al. Mitochondrial DNA alterations underlie an irreversible shift to aerobic glycolysis in fumarate hydratase-deficient renal cancer. Sci Signal. 2021; Jan 5; 14(664): eabc4436. https://doi.org/10.1126/scisignal.abc4436. PMID: 33402335

42. Shuch B., Li S., Risch H., et al. Estimation of the carrier frequency of fumarate hydratase alterations and implications for kidney cancer risk in hereditary leiomyomatosis and renal cancer. Cancer. 2020; Aug 15; 126(16): 3657–3666. https://doi.org/10.1002/cncr.32914. PMID: 32413184

43. Ball M.W., Ricketts C.J. Complexities in estimating the true risk of hereditary leiomyomatosis and renal cell carcinoma and the development of kidney cancer. Cancer. 2020; Aug 15; 126(16): 3617–3619. https://doi.org/10.1002/cncr.32915. PMID: 32413160

44. Sun G., Zhang X., Liang J., et al. Integrated molecular characterization of fumarate hydratase-deficient renal cell carcinoma. Clin Cancer Res. 2021; Mar 15; 27(6): 1734–1743. https://doi.org/10.1158/1078-0432.CCR-20-3788. PMID: 33414138

45. Muller M., Ferlicot S., Guillaud-Bataille M., et al. Reassessing the clinical spectrum associated with hereditary leiomyomatosis and renal cell carcinoma syndrome in French FH mutation carriers. Clin Genet. 2017; Dec; 92(6): 606–615. https://doi.org/10.1111/cge.13014. PMID: 28300276

46. Forde C., Lim D.H.K., Alwan Y., et al. Hereditary leiomyomatosis and renal cell cancer: clinical, molecular, and screening features in a cohort of 185 affected individuals. Eur Urol Oncol. 2020; Dec; 3(6): 764–772. https://doi.org/10.1016/j.euo.2019.11.002. PMID: 31831373

47. Hol J.A., Jongmans M.C.J., Littooij A.S., et al. Renal cell carcinoma in young FH mutation carriers: case series and review of the literature. Fam Cancer. 2020; Jan; 19(1): 55–63. https://doi.org/10.1007/s10689-019-00155-3. PMID: 31792767

48. Nikpanah M., Paschall A.K., Ahlman M.A., et al. 18Fluorodeoxyglucose-positron emission tomography/computed tomography for differentiation of renal tumors in hereditary kidney cancer syndromes. Abdom Radiol (NY). 2021; Jul; 46(7): 3301–3308. https://doi.org/10.1007/s00261-021-02999-9. PMID: 33688985

49. Ravaud A., Oudard S., De Fromont M., et al. First-line treatment with sunitinib for type 1 and type 2 locally advanced or metastatic papillary renal cell carcinoma: a phase II study (SUPAP) by the French Genitourinary Group (GETUG). Ann Oncol. 2015; Jun; 26(6): 1123–1128. https://doi.org/10.1093/annonc/mdv149. PMID: 25802238

50. Carril-Ajuria L., Colomba E., Cerbone L., et al. Response to systemic therapy in fumarate hydratase-deficient renal cell carcinoma. Eur J Cancer. 2021; Jul; 151: 106–114. https://doi.org/10.1016/j.ejca.2021.04.009. PMID: 33975058

51. Choi Y., Keam B., Kim M., et al. Bevacizumab plus erlotinib combination therapy for advanced hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinoma: a multicenter retrospective analysis in Korean patients. Cancer Res Treat. 2019; Oct; 51(4): 1549–1556. https://doi.org/10.4143/crt.2019.086. PMID: 30913859

52. Sulkowski P.L., Sundaram R.K., Oeck S., et al. Krebs-cycledeficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet. 2018; Aug; 50(8): 1086–1092. https://doi.org/10.1038/s41588-018-0170-4. PMID: 30013182

53. Lindner A.K., Tulchiner G., Seeber A., et al. Targeting strategies in the treatment of fumarate hydratase deficient renal cell carcinoma. Front Oncol. 2022; Jul 15; 12: 906014. https://doi.org/10.3389/fonc.2022.906014. PMID: 35912170

54. Adrianzen Herrera D.A., Fleisig S.B., Gartrell B.A. Impressive and durable response to nivolumab in a patient with metastatic type 2 papillary renal cell carcinoma: On-label but without evidence. Invest New Drugs. 2017 Oct; 35(5): 665–668. https://doi.org/10.1007/s10637-017-0469-5. PMID: 28466375

55. Yonese I., Ito M., Takemura K., et al. A Case of metastatic hereditary leiomyomatosis and renal cell cancer syndrome-associated renal cell carcinoma treated with a sequence of axitinib and nivolumab following cytoreductive nephrectomy. J Kidney Cancer VHL. 2020; Jul 20; 7(2): 6–10. https://doi.org/10.15586/jkcvhl.2020.148. PMID: 32953419

56. Iribe Y., Furuya M., Shibata Y., et al. Complete response of hereditary leiomyomatosis and renal cell cancer (HLRCC)-associated renal cell carcinoma to nivolumab and ipilimumab combination immunotherapy by: a case report. Fam Cancer. 2021; Jan; 20(1): 75–80. https://doi.org/10.1007/s10689-020-00195-0. PMID: 32666341

57. Wang T., Huang Y., Huang X., et al. Complete response of hereditary leiomyomatosis and renal cell cancer (HLRCC)-associated renal cell carcinoma to pembrolizumab immunotherapy: a case report. Front Oncol. 2021; Oct 15; 11: 735077. https://doi.org/10.3389/fonc.2021.735077. PMID: 34722283

58. Gleeson J.P., Nikolovski I., Dinatale R., et al. Comprehensive molecular characterization and response to therapy in fumarate hydratase-deficient renal cell carcinoma. Clin Cancer Res. 2021; May 15; 27(10): 2910–2919. https://doi.org/10.1158/1078-0432. CCR-20-4367. PMID: 33658299

59. Alaghehbandan R., Stehlik J., Trpkov K., et al. Programmed death-1 (PD-1) receptor/PD-1 ligand (PD-L1) expression in fumarate hydratase-deficient renal cell carcinoma. Ann Diagn Pathol. 2017; Aug; 29: 17–22. https://doi.org/10.1016/j.anndiagpath.2017.04.007. PMID: 28807336

60. Vanharanta S., Buchta M., McWhinney S.R., et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet. 2004; Jan; 74(1): 153–159. https://doi.org/10.1086/381054. PMID: 14685938

61. Fuchs T.L., Maclean F., Turchini J., et al. Expanding the clinicopathological spectrum of succinate dehydrogenase-deficient renal cell carcinoma with a focus on variant morphologies: a study of 62 new tumors in 59 patients. Mod Pathol. 2022; Jun; 35(6): 836–849. https://doi.org/10.1038/s41379-021-00998-1. PMID: 34949766

62. Andrews K.A., Ascher D.B., Pires D.E.V., et al. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet. 2018; Jun; 55(6): 384–394. https://doi.org/10.1136/jmedgenet-2017-105127. PMID: 29386252

63. Yoo A., Tang C., Zucker M., et al. Genomic and metabolic hallmarks of SDH- and FH-deficient renal cell carcinomas. Eur Urol Focus. 2022; Sep; 8(5): 1278–1288. https://doi.org/10.1016/j.euf.2021.12.002. Epub 2022 Mar 11. PMID: 35288096

64. Gill A.J., Pachter N.S., Chou A., et al. Renal tumors associated with germline SDHB mutation show distinctive morphology. Am J Surg Pathol. 2011; Oct; 35(10): 1578–1585. https://doi.org/10.1097/PAS.0b013e318227e7f4. PMID: 21934479

65. Ricketts C.J., Shuch B., Vocke C.D., et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol. 2012; Dec; 188(6): 2063–2071. https://doi.org/10.1016/j.juro.2012.08.030. PMID: 23083876

66. Amar L., Pacak K., Steichen O., et al. International consensus on initial screening and follow-up of asymptomatic SDHx mutation carriers. Nat Rev Endocrinol. 2021; Jul; 17(7): 435–444. https://doi.org/10.1038/s41574-021-00492-3. PMID: 34021277

67. Schmidt L.S., Warren M.B., Nickerson M.L., et al. Birt-HoggDubé syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet. 2001; Oct; 69(4): 876–882. https://doi.org/10.1086/323744. PMID: 11533913

68. Matsumoto K., Lim D., Pharoah P.D., et al. A systematic review assessing the existence of pneumothorax-only variants of FLCN. Implications for lifelong surveillance of renal tumours. Eur J Hum Genet. 2021; Nov; 29(11): 1595–1600. https://doi.org/10.1038/s41431-021-00921-x. PMID: 34267338

69. Rossing M., Albrechtsen A., Skytte A.B., et al. Genetic screening of the FLCN gene identify six novel variants and a Danish foun der mutation. J Hum Genet. 2017; Feb; 62(2): 151–157. https://doi.org/10.1038/jhg.2016.118. Epub 2016 Oct 13. PMID: 27734835

70. Lagerstedt-Robinson K., Baranowska Körberg I., Tsiaprazis S., et al. A retrospective two centre study of Birt-Hogg-Dubé syndrome reveals a pathogenic founder mutation in FLCN in the Swedish population. PLoS One. 2022; Feb 17; 17(2): e0264056. https://doi.org/10.1371/journal.pone.0264056. PMID: 35176117

71. Muller M.E., Daccord C., Taffé P., Lazor R. Prevalence of BirtHogg-Dubé syndrome determined through epidemiological data on spontaneous pneumothorax and bayes theorem. Front Med (Lausanne). 2021; Apr 27; 8: 631168. https://doi.org/10.3389/fmed.2021.631168. eCollection 2021. PMID: 33987191

72. Woodford M.R., Baker-Williams A.J., Sager R.A., et al. The tumor suppressor folliculin inhibits lactate dehydrogenase A and regulates the Warburg effect. Nat Struct Mol Biol. 2021; Aug; 28(8): 662–670. https://doi.org/10.1038/s41594-021-00633-2. PMID: 34381247

73. Glykofridis I.E., Henneman A.A., Balk J.A., et al. Phosphoproteomic analysis of FLCN inactivation highlights differential kinase pathways and regulatory TFEB phosphoserines. Mol Cell Proteomics. 2022; Sep; 21(9): 100263. https://doi.org/10.1016/j.mcpro.2022.100263. PMID: 35863698

74. Houweling A.C., Gijezen L.M., Jonker M.A., et al. Renal cancer and pneumothorax risk in Birt-Hogg-Dubé syndrome; an analysis of 115 FLCN mutation carriers from 35 BHD families. Br J Cancer. 2011; Dec 6; 105(12): 1912–1919. https://doi.org/10.1038/bjc.2011.463. PMID: 22146830

75. Hasumi H., Furuya M., Tatsuno K., et al. BHD-associated kidney cancer exhibits unique molecular characteristics and a wide variety of variants in chromatin remodeling genes. Hum Mol Genet. 2018; Aug 1; 27(15): 2712–2724. https://doi.org/10.1093/hmg/ddy181. PMID: 29767721

76. Furuya M., Hasumi H., Yao M., Nagashima Y. Birt-Hogg-Dubé syndrome-associated renal cell carcinoma: Histopathological features and diagnostic conundrum. Cancer Sci. 2020; Jan; 111(1): 15–22. https://doi.org/10.1111/cas.14255. PMID: 31777168

77. Gijezen L.M., Vernooij M., Martens H., et al. Topical rapamycin as a treatment for fibrofolliculomas in Birt-Hogg-Dubé syndrome: a double-blind placebo-controlled randomized split-face trial. PLoS One. 2014; Jun 9; 9(6): e99071. https://doi.org/10.1371/journal.pone.0099071. PMID: 24910976

78. Ciccarese C., Iacovelli R., Brunelli M., et al. Addressing the best treatment for non-clear cell renal cell carcinoma: A meta-analysis of randomised clinical trials comparing VEGFR-TKis versus mTORi-targeted therapies. Eur J Cancer. 2017; Sep; 83: 237–246. https://doi.org/10.1016/j.ejca.2017.06.030. PMID: 28756136

79. Kim D., Wysong A., Teng J.M., Rahman Z. Laser-assisted delivery of topical rapamycin: mTOR inhibition for Birt-HoggDube syndrome. Dermatol Surg. 2019; Dec; 45(12): 1713– 1715. https://doi.org/10.1097/DSS.0000000000001778. PMID: 30640787

80. Northrup H., Aronow M.E., Bebin E.M., et al. Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr Neurol. 2021; Oct; 123: 50–66. https://doi.org/10.1016/j.pediatrneurol.2021.07.011. PMID: 34399110

81. Ebrahimi-Fakhari D., Mann L.L., Poryo M., et al. Incidence of tuberous sclerosis and age at first diagnosis: new data and emerging trends from a national, prospective surveillance study. Orphanet J Rare Dis. 2018; Jul 17; 13(1): 117. https://doi.org/10.1186/s13023-018-0870-y. PMID: 30016967

82. Zöllner J.P., Franz D.N., Hertzberg C., et al A. A systematic review on the burden of illness in individuals with tuberous sclerosis complex (TSC). Orphanet J Rare Dis. 2020; Jan 21; 15(1): 23. https://doi.org/10.1186/s13023-019-1258-3. PMID: 31964424

83. Patel U., Simpson E., Kingswood J.C., Saggar-Malik A.K. Tuberose sclerosis complex: analysis of growth rates aids differ entiation of renal cell carcinoma from atypical or minimal-fat-containing angiomyolipoma. Clin Radiol. 2005; Jun; 60(6): 665–673; discussion 663664. https://doi.org/10.1016/j.crad.2005.01.009. PMID: 16038693

84. Seyam R.M., Alkhudair W.K., Kattan S.A., et al. The risks of renal angiomyolipoma: reviewing the evidence. J Kidney Cancer VHL. 2017 Oct; 16; 4(4): 13–25. https://doi.org/10.15586/jkcvhl.2017.97. PMID: 29090118

85. Bissler J.J., Kingswood J.C., Radzikowska E., et al. Everolimus long-term use in patients with tuberous sclerosis complex: Fouryear update of the EXIST-2 study. PLoS One. 2017; Aug 9; 12(8): e0180939. https://doi.org/10.1371/journal.pone.0180939. PMID: 28792952

86. Yang P., Cornejo K.M., Sadow P.M., et al. Renal cell carcinoma in tuberous sclerosis complex. Am J Surg Pathol. 2014; Jul; 38(7): 895–909. https://doi.org/10.1097/PAS.0000000000000237. PMID: 24832166

87. Kingswood J.C., Belousova E., Benedik M.P., et al. Renal angiomyolipoma in patients with tuberous sclerosis complex: findings from the TuberOus SClerosis registry to increase disease Awareness. Nephrol Dial Transplant. 2019; Mar 1; 34(3): 502– 508. https://doi.org/10.1093/ndt/gfy063. PMID: 29697822

88. Nelen M.R., Kremer H., Konings I.B., et al. Novel PTEN mutations in patients with Cowden disease: absence of clear genotypephenotype correlations. Eur J Hum Genet. 1999; Apr; 7(3): 267– 273. https://doi.org/10.1038/sj.ejhg.5200289. PMID: 10234502

89. Tan M.H., Mester J.L., Ngeow J., et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012; Jan 15; 18(2): 400–407. https://doi.org/10.1158/1078-0432.CCR11-2283. PMID: 22252256

90. Plamper M., Gohlke B., Woelfle J. PTEN hamartoma tumor syndrome in childhood and adolescence-a comprehensive review and presentation of the German pediatric guideline. Mol Cell Pediatr. 2022; Feb 21; 9(1): 3. https://doi.org/10.1186/s40348-022-00135-1. PMID: 35187600

91. Mester J.L., Zhou M., Prescott N., Eng C. Papillary renal cell carcinoma is associated with PTEN hamartoma tumor syndrome. Urology. 2012; May; 79(5): 1187.e1–7. https://doi.org/10.1016/j.urology.2011.12.025. PMID: 22381246

92. Shuch B., Ricketts C.J., Vocke C.D., et al. Germline PTEN mutation Cowden syndrome: an underappreciated form of hereditary kidney cancer. J Urol. 2013; Dec; 190(6): 1990–1998. https://doi.org/10.1016/j.juro.2013.06.012. PMID: 23764071

93. Komiya T., Blumenthal G.M., DeChowdhury R., et al. A pilot study of sirolimus in subjects with Cowden syndrome or other syndromes characterized by germline mutations in PTEN. Oncologist. 2019; Dec; 24(12): 1510–e1265. https://doi.org/10.1634/theoncologist.2019-0514. PMID: 31350329

94. Testa J.R., Cheung M., Pei J., et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011; Aug 28; 43(10): 1022–1025. https://doi.org/10.1038/ng.912. PMID: 21874000

95. Farley M.N., Schmidt L.S., Mester J.L., et al. A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol Cancer Res. 2013; Sep; 11(9): 1061–1071. https://doi.org/10.1158/1541-7786.MCR-13-0111. PMID: 23709298

96. Popova T., Hebert L., Jacquemin V., et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet. 2013; Jun 6; 92(6): 974–980. https://doi.org/10.1016/j.ajhg.2013.04.012. PMID: 23684012

97. Carbone M., Flores E.G., Emi M., et al. Combined genetic and genealogic studies uncover a large BAP1 cancer syndrome kindred tracing back nine generations to a common ancestor from the 1700s. PLoS Genet. 2015; Dec 18; 11(12): e1005633. https://doi.org/10.1371/journal.pgen.1005633. PMID: 26683624

98. Carbone M., Harbour J.W., Brugarolas J., et al. Biological mechan isms and clinical significance of BAP1 mutations in human cancer. Cancer Discov. 2020; Aug; 10(8): 1103–1120. https://doi.org/10.1158/2159-8290.CD-19-1220. PMID: 32690542

99. Walpole S., Pritchard A.L., Cebulla C.M., et al. Comprehensive study of the clinical phenotype of germline BAP1 variant-carrying families worldwide. J Natl Cancer Inst. 2018; Dec 1; 110(12): 1328–1341. https://doi.org/10.1093/jnci/djy171. PMID: 30517737

100. Gomella P.T., Linehan W.M., Ball M.W. Precision surgery and kidney cancer: knowledge of genetic alterations influences surgical management. Genes (Basel). 2021; Feb 11; 12(2): 261. https://doi.org/10.3390/genes12020261. PMID: 33670168

101. Bell H.N., Kumar-Sinha C., Mannan R., et al. Pathogenic ATM and BAP1 germline mutations in a case of early-onset, familial sarcomatoid renal cancer. Cold Spring Harb Mol Case Stud. 2022; Apr 28; 8(3): a006203. https://doi.org/10.1101/mcs.a006203. PMID: 35483881

102. Ricketts C.J., De Cubas A.A., Fan H., et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018; Apr 3; 23(1): 313–326.e5. https://doi.org/10.1016/j.celrep.2018.03.075. PMID: 29617669

103. Bertolotto C., Lesueur F., Giuliano S., et al. A SUMOylationdefective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011; Oct 19; 480(7375): 94–98. https://doi.org/10.1038/nature10539. PMID: 22012259

104. Guhan S.M., Artomov M., McCormick S., et al. Cancer risks associated with the germline MITF(E318K) variant. Sci Rep. 2020; Oct 13; 10(1): 17051. https://doi.org/10.1038/s41598-020-74237-z. PMID: 33051548

105. Yngvadottir B., Andreou A., Bassaganyas L., et al. Frequency of pathogenic germline variants in cancer susceptibility genes in 1336 renal cell carcinoma cases. Hum Mol Genet. 2022; Aug 25; 31(17): 3001–3011. https://doi.org/10.1093/hmg/ddac089. PMID: 35441217

106. Wu J., Wang H., Ricketts C.J., et al. Germline mutations of renal cancer predisposition genes and clinical relevance in Chinese patients with sporadic, early-onset disease. Cancer. 2019; Apr 1; 125(7): 1060–1069. https://doi.org/10.1002/cncr.31908. PMID: 30548481

107. Abou Alaiwi S., Nassar A.H., Adib E., et al. Trans-ethnic variation in germline variants of patients with renal cell carcinoma. Cell Rep. 2021; Mar 30; 34(13): 108926. https://doi.org/10.1016/j.celrep.2021.108926. PMID: 33789101

108. Truong H., Sheikh R., Kotecha R., et al. Germline variants identified in patients with early-onset renal cell carcinoma referred for germline genetic testing. Eur Urol Oncol. 2021; Dec; 4(6): 993–1000. https://doi.org/10.1016/j.euo.2021.09.005. PMID: 34654685

109. Smith P.S., West H., Whitworth J., et al. Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: Evidence for further locus heterogeneity. Genes Chromosomes Cancer. 2021; Jan; 60(1): 5–16. https://doi.org/10.1002/gcc.22893. PMID: 32830346

110. Sokol E.S., Pavlick D., Khiabanian H., et al. Pan-cancer analysis of BRCA1 and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity. JCO Precis Oncol. 2020; 4: 442–465. https://doi.org/10.1200/po.19.00345. Epub 2020 Apr 30. PMID: 32903788

111. Imyanitov E.N. Cytotoxic and targeted therapy for BRCA1/2driven cancers. Hered Cancer Clin Pract. 2021; Aug 28; 19(1): 36. https://doi.org/10.1186/s13053-021-00193-y. PMID: 34454564

112. Zeng C., Bastarache L.A., Tao R., et al. Association of pathogenic variants in hereditary cancer genes with multiple diseases. JAMA Oncol. 2022; Jun 1; 8(6): 835–844. https://doi.org/10.1001/jamaoncol.2022.0373. PMID: 35446370

113. Volkov N.M., Yanus G.A., Ivantsov A.O., et al. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer. Invest New Drugs. 2020; Jun; 38(3): 894–898. https://doi.org/10.1007/s10637-019-00842-z. Epub 2019 Aug 3. PMID: 31377904

114. Benusiglio P.R., Couvé S., Gilbert-Dussardier B., et al. A germline mutation in PBRM1 predisposes to renal cell carcinoma. J Med Genet. 2015; Jun; 52(6): 426–430. https://doi.org/10.1136/jmedgenet-2014-102912. PMID: 25911086

115. Jafri M., Wake N.C., Ascher D.B., et al. Germline mutations in the CDKN2B tumor suppressor gene predispose to renal cell carcinoma. Cancer Discov. 2015; Jul; 5(7): 723–729. https://doi.org/10.1158/2159-8290.CD-14-1096. PMID: 25873077

116. Andreou A., Yngvadottir B., Bassaganyas L., et al. Elongin C (ELOC/TCEB1)-associated von Hippel-Lindau disease. Hum Mol Genet. 2022; Aug 23; 31(16): 2728–2737. https://doi.org/10.1093/hmg/ddac066. PMID: 35323939

117. Purdue M.P., Song L., Scélo G., et al. Pathway analysis of renal cell carcinoma genome-wide association Studies Identifies Novel Associations. Cancer Epidemiol Biomarkers Prev. 2020; Oct; 29(10): 2065–2069. https://doi.org/10.1158/1055-9965.EPI-200472. PMID: 32732251

118. Jia G., Lu Y., Wen W., et al. Evaluating the utility of polygenic risk scores in identifying high-risk individuals for eight common cancers. JNCI Cancer Spectr. 2020; Mar 12; 4(3): pkaa021. https://doi.org/10.1093/jncics/pkaa021. PMID: 32596635

119. Tsuzuki T., Iwata H., Murase Y., et al. Renal tumors in endstage renal disease: A comprehensive review. Int J Urol. 2018; Sep; 25(9): 780–786. https://doi.org/10.1111/iju.13759. PMID: 30066367

120. Woldu S.L., Weinberg A.C., RoyChoudhury A., et al. Renal insufficiency is associated with an increased risk of papillary renal cell carcinoma histology. Int Urol Nephrol. 2014; Nov; 46(11): 2127–2132. https://doi.org/10.1007/s11255-014-0780-4. PMID: 25000896

121. Saly D.L., Eswarappa M.S., Street S.E., Deshpande P. Renal cell cancer and chronic kidney disease. Adv Chronic Kidney Dis. 2021; Sep; 28(5): 460–468.e1. https://doi.org/10.1053/j.ackd.2021.10.008. PMID: 35190112

122. Hajj P., Ferlicot S., Massoud W., et al. Prevalence of renal cell carcinoma in patients with autosomal dominant polycystic kidney disease and chronic renal failure. Urology. 2009; Sep; 74(3): 631–634. https://doi.org/10.1016/j.urology.2009.02.078. PMID: 19616833

123. Jilg C.A., Drendel V., Bacher J., et al. Autosomal dominant polycystic kidney disease: prevalence of renal neoplasias in surgical kidney specimens. Nephron Clin Pract. 2013; 123(1-2): 13–21. https://doi.org/10.1159/000351049. Epub 2013 Jun 4. PMID: 23752029

124. van de Pol J.A.A., van den Brandt P.A., Schouten L.J. Kidney stones and the risk of renal cell carcinoma and upper tract urothelial carcinoma: the Netherlands cohort study. Br J Cancer. 2019; Feb; 120(3): 368–374. https://doi.org/10.1038/s41416-018-0356-7. PMID: 30563989

125. Su Y., Hong A.L. Recent advances in renal medullary carcinoma. Int J Mol Sci. 2022; Jun 26; 23(13): 7097. https://doi.org/10.3390/ijms23137097. PMID: 35806102


Review

Views: 228


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)