Hereditary predisposition to kidney cancer: cancer syndromes, multisystemic disorders, and nephropathies
https://doi.org/10.47093/2218-7332.2023.14.2.5-20
Abstract
Kidney cancer (KC) is a common disease characterized by extreme heterogeneity. There are nine known monogenic diseases associated with a significantly elevated KC risk: von Hippel-Lindau disease, MET-associated papillary renal cancer, familial multiple leiomyomatosis and renal cell cancer, SDHx-associated familial pheochromocytoma/ paraganglioma, Birt-Hogg-Dube syndrome, tuberous sclerosis, Cowden syndrome, BAP1- and MITF-associated melanoma-KC predisposition. These syndromes differ in the degree of cancer risk, the quantity, growth and progression rates of associated precancerous lesions, the morphology, and clinical presentations of malignancy itself, and in the response to therapy. Identification of causative germline lesion allows planning the surveillance of a mutation carrier, choosing the right time and extent of surgery, and optimizing treatment regimen. Hereditary KC research often brings forward novel approaches to the management of sporadic “phenocopies” of hereditary syndromes, i.e. sporadic cancers with somatic mutations in similar genes. The main directions for further study of genetic factors of KC are to find novel KC genes, to study risk modifiers in carriers of highly penetrant mutations, to clarify the involvement of hereditary nephropathies in the occurrence of renal cancers.
About the Authors
G. A. YanusRussian Federation
Grigory A. Yanus, Cand. of Sci. (Medicine), Researcher, Laboratory of Molecular Oncology; Researcher, Laboratory of Molecular Diagnostics with an extended group of Ecogenetics
68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758
2, Litovskaya str., Saint Petersburg, 194100
A. G. Iyevleva
Russian Federation
Aglaya G. Iyevleva, Cand. of Sci. (Medicine), Senior Researcher, Laboratory of Molecular Oncology; Associate Professor, Department of General and Molecular Medical Genetics
68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758
2, Litovskaya str., Saint Petersburg, 194100
E. N. Suspitsin
Russian Federation
Evgeny N. Suspitsin, Cand. of Sci. (Medicine), Senior Researcher, Laboratory of Molecular Oncology; Associate Professor, Department of General and Molecular Medical Genetics
68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758
2, Litovskaya str., Saint Petersburg, 194100
A. V. Tumakova
Russian Federation
Anastasia V. Tumakova, Acting Head of the Laboratory of Molecular Diagnostics with an extended group of Ecogenetics
2, Litovskaya str., Saint Petersburg, 194100
E. V. Belogubova
Russian Federation
Evgenia V. Belogubova, Cand. of Sci. (Biology), Junior Researcher, Laboratory of Molecular Oncology
68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758
S. N. Aleksakhina
Russian Federation
Svetlana N. Aleksakhina, Cand. of Sci. (Biology), Senior Researcher, Laboratory of Molecular Oncology
68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758
A. V. Togo
Russian Federation
Alexandr V. Togo, Cand. of Sci. (Biology), Leading Researcher, Laboratory of Molecular Oncology
68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758
E. N. Imyanitov
Russian Federation
Evgeny N. Imyanitov, Doctor of Sci. (Medicine), Professor, corresponding member of the RAS, Head of the Scientific Department of Tumor Growth Biology; Head of the Department of General and Molecular Medical Genetics; Professor, Department of Oncology
68, Leningradskaya str., Pesochny village, Saint Petersburg, 197758
+7 (901) 302-37-07
References
1. Ghosn M., Kattan J., Karak F.E., et al. Renal cell carcinoma mana gement: real-world practice and challenges at a national level. Future Oncol. 2023 May 17. https://doi.org/10.2217/fon-2021-1189. Online ahead of print. PMID: 37194701
2. Mucci L.A., Hjelmborg J.B., Harris J.R., et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA. 2016; 315(1): 68–76. https://doi.org/10.1001/jama.2015.17703. PMID: 26746459
3. Kallinikas G., Habib H., Tsimiliotis D., et al. Renal cell cancers: unveiling the hereditary ones and saving lives-a tailored diagnostic approach. Int Urol Nephrol. 2017; 49(9): 1507–1512. https://doi.org/10.1007/s11255-017-1625-8. PMID: 28567709
4. Carlo M.I., Mukherjee S., Mandelker D., et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol. 2018; Sep 1; 4(9): 1228–1235. https://doi.org/10.1001/jamaoncol.2018.1986. PMID: 29978187
5. Kong W., Yang T., Wen X., et al. Germline mutation landscape and associated clinical characteristics in Chinese patients with renal cell carcinoma. Front Oncol. 2021; Dec 2; 11: 737547. https://doi.org/10.3389/fonc.2021.737547. PMID: 34926252
6. Motzer R.J., Jonasch E., Agarwal N., et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022; Jan; 20(1): 71–90. https://doi.org/10.6004/jnccn.2022.0001. PMID: 34991070
7. Cancer Genome Atlas Research Network, Linehan W.M., Spellman P.T., et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016; Jan 14; 374(2): 135–145. https://doi.org/10.1056/NEJMoa1505917. PMID: 26536169
8. Moch H., Amin M.B., Berney D.M., et al. The 2022 World Health Organization classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol. 2022; Nov; 82(5): 458–468. https://doi.org/10.1016/j.eururo.2022.06.016. PMID: 35853783
9. Choueiri T.K., Bauer T.M., Papadopoulos K.P., et al. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat Med. 2021; May; 27(5): 802–805. https://doi.org/10.1038/s41591-021-01324-7. PMID: 33888901
10. Jonasch E., Donskov F., Iliopoulos O., et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N Engl J Med. 2021; Nov 25; 385(22): 2036-2046. https://doi.org/10.1056/NEJMoa2103425. PMID: 34818478
11. Bratslavsky G., Mendhiratta N., Daneshvar M., et al. Genetic risk assessment for hereditary renal cell carcinoma: Clinical consensus statement. Cancer. 2021; Nov 1; 127(21): 3957–3966. https://doi.org/10.1002/cncr.33679. PMID: 34343338
12. Latif F., Tory K., Gnarra J., et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993; May 28; 260(5112): 1317–1320. https://doi.org/10.1126/science.8493574. PMID: 8493574
13. Binderup M.L.M., Galanakis M., Budtz-Jørgensen E., et al. Prevalence, birth incidence, and penetrance of von Hippel-Lindau disease (vHL) in Denmark. Eur J Hum Genet. 2017; Feb; 25(3): 301–307. https://doi.org/10.1038/ejhg.2016.173. PMID: 27966541
14. Crespigio J., Berbel L.C.L., Dias M.A., et al. Von Hippel-Lindau disease: a single gene, several hereditary tumors. J Endocrinol Invest. 2018; Jan; 41(1): 21–31. https://doi.org/10.1007/s40618-017-0683-1. PMID: 28589383
15. Kruizinga R.C., Sluiter W.J., de Vries E.G., et al. Calculating optimal surveillance for detection of von Hippel-Lindau-related manifestations. Endocr Relat Cancer. 2013; Dec 20; 21(1): 63–71. https://doi.org/10.1530/ERC-13-0308. PMID: 24132471
16. Chen F., Kishida T., Yao M., et al. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat. 1995; 5(1): 66–75. https://doi.org/10.1002/humu.1380050109. PMID: 7728151
17. Reich M., Jaegle S., Neumann-Haefelin E., et al. Genotypephenotype correlation in von Hippel-Lindau disease. Acta Ophthalmol. 2021; Dec; 99(8): e1492–e1500. https://doi.org/10.1111/aos.14843. PMID: 33720516
18. Chiorean A., Farncombe K.M., Delong S., et al. Large scale genotype- and phenotype-driven machine learning in von Hippel-Lindau disease. Hum Mutat. 2022; Sep; 43(9): 1268–1285. https://doi.org/10.1002/humu.24392. PMID: 35475554
19. Koeller D.R., Manning D.K., Schwartz A., et al. An optimized protocol for evaluating pathogenicity of VHL germline variants in patients suspected with von Hippel-Lindau syndrome: Using somatic genome to inform the role of germline variants. MethodsX. 2022; Jun 18; 9: 101761. https://doi.org/10.1016/j.mex.2022.101761.eCollection 2022. PMID: 35774415
20. McNeill A., Rattenberry E., Barber R., et al. Genotype-phenotype correlations in VHL exon deletions. Am J Med Genet A. 2009; Oct; 149A(10): 2147–2151. https://doi.org/10.1002/ajmg.a.33023. PMID: 19764026
21. Chomette L., Migeotte I., Dewachter C., et al. Early-onset and severe pulmonary arterial hypertension due to a novel compound heterozygous association of rare VHL mutations: A case report and review of existing data. Pulm Circ. 2022; Apr 1; 12(2): e12052. https://doi.org/10.1002/pul2.12052. PMID: 35734542
22. Ang S.O., Chen H., Hirota K., et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002; Dec; 32(4): 614–621. https://doi.org/10.1038/ng1019. PMID: 12415268
23. Binderup M.L., Jensen A.M., Budtz-Jørgensen E., Bisgaard M.L. Survival and causes of death in patients with von Hippel-Lindau disease. J Med Genet. 2017; Jan; 54(1): 11–18. https://doi.org/10.1136/jmedgenet-2016-104058. PMID: 27539272
24. Lonser R.R., Butman J.A., Huntoon K., et al. Prospective natural history study of central nervous system hemangioblastomas in von Hippel-Lindau disease. J Neurosurg. 2014; May; 120(5): 1055–1062. https://doi.org/10.3171/2014.1.JNS131431. PMID: 24579662
25. Ball M.W., An J.Y., Gomella P.T., et al. Growth rates of genetically defined renal tumors: implications for active surveillance and intervention. J Clin Oncol. 2020; Apr 10; 38(11): 1146–1153. https://doi.org/10.1200/JCO.19.02263. PMID: 32083993
26. Walther M.M., Choyke P.L., Glenn G., et al. Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol. 1999; May; 161(5): 1475–1479. https://doi.org/10.1016/s0022-5347(05)68930-6. PMID: 10210376
27. Binderup L.M., Smerdel M., Borgwadt L., et al. von Hippel-Lindau disease: updated guideline for diagnosis and surveillance. Eur J Med Genet. 2022; Aug; 65(8): 104538. https://doi.org/10.1016/j.ejmg.2022.104538. PMID: 35709961
28. Gossage L., Eisen T., Maher E.R. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015; Jan; 15(1): 55–64. https://doi.org/10.1038/nrc3844. PMID: 25533676
29. Kaelin W.G. Jr. Von Hippel-Lindau disease: insights into oxygen sensing, protein degradation, and cancer. J Clin Invest. 2022; Sep 15; 132(18): e162480. https://doi.org/10.1172/JCI162480. PMID: 36106637
30. Choueiri T.K., Kaelin W.G. Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med. 2020; Oct; 26(10): 1519–1530. https://doi.org/10.1038/s41591-020-1093-z. PMID: 33020645
31. Fallah J., Brave M.H., Weinstock C., et al. FDA approval summary: belzutifan for von Hippel-Lindau disease-associated tumors. Clin Cancer Res. 2022; Nov 14; 28(22): 4843–4848. https://doi.org/10.1158/1078-0432.CCR-22-1054. PMID: 35727604
32. Schmidt L., Duh F.M., Chen F., et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997; May; 16(1): 68–73. https://doi.org/10.1038/ng0597-68. PMID: 9140397
33. Schmidt L., Junker K., Nakaigawa N., et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999 Apr 8; 18(14): 2343–2350. https://doi.org/10.1038/sj.onc.1202547. PMID: 10327054
34. Adlard J. Multiple primary cancers (renal papillary, lymphoma and teratoma) and hepatic cysts in association with a pathogenic germline mutation in the MET gene. Fam Cancer. 2021; Jan; 20(1): 81–83. https://doi.org/10.1007/s10689-020-00196-z. PMID: 32686009
35. Sebai M., Tulasne D., Caputo S.M., et al. Novel germline MET pathogenic variants in French patients with papillary renal cell carcinomas type I. Hum Mutat. 2022; Mar; 43(3): 316–327. https://doi.org/10.1002/humu.24313. PMID: 34882875
36. Lubensky I.A., Schmidt L., Zhuang Z., et al. Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol. 1999; Aug; 155(2): 517–526. https://doi.org/10.1016/S0002-9440(10)65147-4. PMID: 10433944
37. Denize T., Just P.A., Sibony M., et al. MET alterations in biphasic squamoid alveolar papillary renal cell carcinomas and clinicopathological features. Mod Pathol. 2021; Mar; 34(3): 647–659. https://doi.org/10.1038/s41379-020-0645-6. PMID: 32770124
38. Choueiri T.K., Heng D.Y.C., Lee J.L., et al. Efficacy of savolitinib vs sunitinib in patients with MET-driven papillary renal cell carcinoma: The SAVOIR phase 3 randomized clinical trial. JAMA Oncol. 2020; Aug 1; 6(8): 1247–1255. https://doi.org/10.1001/jamaoncol.2020.2218. PMID: 32469384
39. Launonen V., Vierimaa O., Kiuru M., et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci USA. 2001; Mar 13; 98(6): 3387–3392. https://doi.org/10.1073/pnas.051633798. PMID: 11248088
40. Ooi A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin Cancer Biol. 2020; Apr; 61: 158–166. https://doi.org/10.1016/j.semcancer.2019.10.016. PMID: 31689495
41. Crooks D.R., Maio N., Lang M., et al. Mitochondrial DNA alterations underlie an irreversible shift to aerobic glycolysis in fumarate hydratase-deficient renal cancer. Sci Signal. 2021; Jan 5; 14(664): eabc4436. https://doi.org/10.1126/scisignal.abc4436. PMID: 33402335
42. Shuch B., Li S., Risch H., et al. Estimation of the carrier frequency of fumarate hydratase alterations and implications for kidney cancer risk in hereditary leiomyomatosis and renal cancer. Cancer. 2020; Aug 15; 126(16): 3657–3666. https://doi.org/10.1002/cncr.32914. PMID: 32413184
43. Ball M.W., Ricketts C.J. Complexities in estimating the true risk of hereditary leiomyomatosis and renal cell carcinoma and the development of kidney cancer. Cancer. 2020; Aug 15; 126(16): 3617–3619. https://doi.org/10.1002/cncr.32915. PMID: 32413160
44. Sun G., Zhang X., Liang J., et al. Integrated molecular characterization of fumarate hydratase-deficient renal cell carcinoma. Clin Cancer Res. 2021; Mar 15; 27(6): 1734–1743. https://doi.org/10.1158/1078-0432.CCR-20-3788. PMID: 33414138
45. Muller M., Ferlicot S., Guillaud-Bataille M., et al. Reassessing the clinical spectrum associated with hereditary leiomyomatosis and renal cell carcinoma syndrome in French FH mutation carriers. Clin Genet. 2017; Dec; 92(6): 606–615. https://doi.org/10.1111/cge.13014. PMID: 28300276
46. Forde C., Lim D.H.K., Alwan Y., et al. Hereditary leiomyomatosis and renal cell cancer: clinical, molecular, and screening features in a cohort of 185 affected individuals. Eur Urol Oncol. 2020; Dec; 3(6): 764–772. https://doi.org/10.1016/j.euo.2019.11.002. PMID: 31831373
47. Hol J.A., Jongmans M.C.J., Littooij A.S., et al. Renal cell carcinoma in young FH mutation carriers: case series and review of the literature. Fam Cancer. 2020; Jan; 19(1): 55–63. https://doi.org/10.1007/s10689-019-00155-3. PMID: 31792767
48. Nikpanah M., Paschall A.K., Ahlman M.A., et al. 18Fluorodeoxyglucose-positron emission tomography/computed tomography for differentiation of renal tumors in hereditary kidney cancer syndromes. Abdom Radiol (NY). 2021; Jul; 46(7): 3301–3308. https://doi.org/10.1007/s00261-021-02999-9. PMID: 33688985
49. Ravaud A., Oudard S., De Fromont M., et al. First-line treatment with sunitinib for type 1 and type 2 locally advanced or metastatic papillary renal cell carcinoma: a phase II study (SUPAP) by the French Genitourinary Group (GETUG). Ann Oncol. 2015; Jun; 26(6): 1123–1128. https://doi.org/10.1093/annonc/mdv149. PMID: 25802238
50. Carril-Ajuria L., Colomba E., Cerbone L., et al. Response to systemic therapy in fumarate hydratase-deficient renal cell carcinoma. Eur J Cancer. 2021; Jul; 151: 106–114. https://doi.org/10.1016/j.ejca.2021.04.009. PMID: 33975058
51. Choi Y., Keam B., Kim M., et al. Bevacizumab plus erlotinib combination therapy for advanced hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinoma: a multicenter retrospective analysis in Korean patients. Cancer Res Treat. 2019; Oct; 51(4): 1549–1556. https://doi.org/10.4143/crt.2019.086. PMID: 30913859
52. Sulkowski P.L., Sundaram R.K., Oeck S., et al. Krebs-cycledeficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet. 2018; Aug; 50(8): 1086–1092. https://doi.org/10.1038/s41588-018-0170-4. PMID: 30013182
53. Lindner A.K., Tulchiner G., Seeber A., et al. Targeting strategies in the treatment of fumarate hydratase deficient renal cell carcinoma. Front Oncol. 2022; Jul 15; 12: 906014. https://doi.org/10.3389/fonc.2022.906014. PMID: 35912170
54. Adrianzen Herrera D.A., Fleisig S.B., Gartrell B.A. Impressive and durable response to nivolumab in a patient with metastatic type 2 papillary renal cell carcinoma: On-label but without evidence. Invest New Drugs. 2017 Oct; 35(5): 665–668. https://doi.org/10.1007/s10637-017-0469-5. PMID: 28466375
55. Yonese I., Ito M., Takemura K., et al. A Case of metastatic hereditary leiomyomatosis and renal cell cancer syndrome-associated renal cell carcinoma treated with a sequence of axitinib and nivolumab following cytoreductive nephrectomy. J Kidney Cancer VHL. 2020; Jul 20; 7(2): 6–10. https://doi.org/10.15586/jkcvhl.2020.148. PMID: 32953419
56. Iribe Y., Furuya M., Shibata Y., et al. Complete response of hereditary leiomyomatosis and renal cell cancer (HLRCC)-associated renal cell carcinoma to nivolumab and ipilimumab combination immunotherapy by: a case report. Fam Cancer. 2021; Jan; 20(1): 75–80. https://doi.org/10.1007/s10689-020-00195-0. PMID: 32666341
57. Wang T., Huang Y., Huang X., et al. Complete response of hereditary leiomyomatosis and renal cell cancer (HLRCC)-associated renal cell carcinoma to pembrolizumab immunotherapy: a case report. Front Oncol. 2021; Oct 15; 11: 735077. https://doi.org/10.3389/fonc.2021.735077. PMID: 34722283
58. Gleeson J.P., Nikolovski I., Dinatale R., et al. Comprehensive molecular characterization and response to therapy in fumarate hydratase-deficient renal cell carcinoma. Clin Cancer Res. 2021; May 15; 27(10): 2910–2919. https://doi.org/10.1158/1078-0432. CCR-20-4367. PMID: 33658299
59. Alaghehbandan R., Stehlik J., Trpkov K., et al. Programmed death-1 (PD-1) receptor/PD-1 ligand (PD-L1) expression in fumarate hydratase-deficient renal cell carcinoma. Ann Diagn Pathol. 2017; Aug; 29: 17–22. https://doi.org/10.1016/j.anndiagpath.2017.04.007. PMID: 28807336
60. Vanharanta S., Buchta M., McWhinney S.R., et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet. 2004; Jan; 74(1): 153–159. https://doi.org/10.1086/381054. PMID: 14685938
61. Fuchs T.L., Maclean F., Turchini J., et al. Expanding the clinicopathological spectrum of succinate dehydrogenase-deficient renal cell carcinoma with a focus on variant morphologies: a study of 62 new tumors in 59 patients. Mod Pathol. 2022; Jun; 35(6): 836–849. https://doi.org/10.1038/s41379-021-00998-1. PMID: 34949766
62. Andrews K.A., Ascher D.B., Pires D.E.V., et al. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet. 2018; Jun; 55(6): 384–394. https://doi.org/10.1136/jmedgenet-2017-105127. PMID: 29386252
63. Yoo A., Tang C., Zucker M., et al. Genomic and metabolic hallmarks of SDH- and FH-deficient renal cell carcinomas. Eur Urol Focus. 2022; Sep; 8(5): 1278–1288. https://doi.org/10.1016/j.euf.2021.12.002. Epub 2022 Mar 11. PMID: 35288096
64. Gill A.J., Pachter N.S., Chou A., et al. Renal tumors associated with germline SDHB mutation show distinctive morphology. Am J Surg Pathol. 2011; Oct; 35(10): 1578–1585. https://doi.org/10.1097/PAS.0b013e318227e7f4. PMID: 21934479
65. Ricketts C.J., Shuch B., Vocke C.D., et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol. 2012; Dec; 188(6): 2063–2071. https://doi.org/10.1016/j.juro.2012.08.030. PMID: 23083876
66. Amar L., Pacak K., Steichen O., et al. International consensus on initial screening and follow-up of asymptomatic SDHx mutation carriers. Nat Rev Endocrinol. 2021; Jul; 17(7): 435–444. https://doi.org/10.1038/s41574-021-00492-3. PMID: 34021277
67. Schmidt L.S., Warren M.B., Nickerson M.L., et al. Birt-HoggDubé syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet. 2001; Oct; 69(4): 876–882. https://doi.org/10.1086/323744. PMID: 11533913
68. Matsumoto K., Lim D., Pharoah P.D., et al. A systematic review assessing the existence of pneumothorax-only variants of FLCN. Implications for lifelong surveillance of renal tumours. Eur J Hum Genet. 2021; Nov; 29(11): 1595–1600. https://doi.org/10.1038/s41431-021-00921-x. PMID: 34267338
69. Rossing M., Albrechtsen A., Skytte A.B., et al. Genetic screening of the FLCN gene identify six novel variants and a Danish foun der mutation. J Hum Genet. 2017; Feb; 62(2): 151–157. https://doi.org/10.1038/jhg.2016.118. Epub 2016 Oct 13. PMID: 27734835
70. Lagerstedt-Robinson K., Baranowska Körberg I., Tsiaprazis S., et al. A retrospective two centre study of Birt-Hogg-Dubé syndrome reveals a pathogenic founder mutation in FLCN in the Swedish population. PLoS One. 2022; Feb 17; 17(2): e0264056. https://doi.org/10.1371/journal.pone.0264056. PMID: 35176117
71. Muller M.E., Daccord C., Taffé P., Lazor R. Prevalence of BirtHogg-Dubé syndrome determined through epidemiological data on spontaneous pneumothorax and bayes theorem. Front Med (Lausanne). 2021; Apr 27; 8: 631168. https://doi.org/10.3389/fmed.2021.631168. eCollection 2021. PMID: 33987191
72. Woodford M.R., Baker-Williams A.J., Sager R.A., et al. The tumor suppressor folliculin inhibits lactate dehydrogenase A and regulates the Warburg effect. Nat Struct Mol Biol. 2021; Aug; 28(8): 662–670. https://doi.org/10.1038/s41594-021-00633-2. PMID: 34381247
73. Glykofridis I.E., Henneman A.A., Balk J.A., et al. Phosphoproteomic analysis of FLCN inactivation highlights differential kinase pathways and regulatory TFEB phosphoserines. Mol Cell Proteomics. 2022; Sep; 21(9): 100263. https://doi.org/10.1016/j.mcpro.2022.100263. PMID: 35863698
74. Houweling A.C., Gijezen L.M., Jonker M.A., et al. Renal cancer and pneumothorax risk in Birt-Hogg-Dubé syndrome; an analysis of 115 FLCN mutation carriers from 35 BHD families. Br J Cancer. 2011; Dec 6; 105(12): 1912–1919. https://doi.org/10.1038/bjc.2011.463. PMID: 22146830
75. Hasumi H., Furuya M., Tatsuno K., et al. BHD-associated kidney cancer exhibits unique molecular characteristics and a wide variety of variants in chromatin remodeling genes. Hum Mol Genet. 2018; Aug 1; 27(15): 2712–2724. https://doi.org/10.1093/hmg/ddy181. PMID: 29767721
76. Furuya M., Hasumi H., Yao M., Nagashima Y. Birt-Hogg-Dubé syndrome-associated renal cell carcinoma: Histopathological features and diagnostic conundrum. Cancer Sci. 2020; Jan; 111(1): 15–22. https://doi.org/10.1111/cas.14255. PMID: 31777168
77. Gijezen L.M., Vernooij M., Martens H., et al. Topical rapamycin as a treatment for fibrofolliculomas in Birt-Hogg-Dubé syndrome: a double-blind placebo-controlled randomized split-face trial. PLoS One. 2014; Jun 9; 9(6): e99071. https://doi.org/10.1371/journal.pone.0099071. PMID: 24910976
78. Ciccarese C., Iacovelli R., Brunelli M., et al. Addressing the best treatment for non-clear cell renal cell carcinoma: A meta-analysis of randomised clinical trials comparing VEGFR-TKis versus mTORi-targeted therapies. Eur J Cancer. 2017; Sep; 83: 237–246. https://doi.org/10.1016/j.ejca.2017.06.030. PMID: 28756136
79. Kim D., Wysong A., Teng J.M., Rahman Z. Laser-assisted delivery of topical rapamycin: mTOR inhibition for Birt-HoggDube syndrome. Dermatol Surg. 2019; Dec; 45(12): 1713– 1715. https://doi.org/10.1097/DSS.0000000000001778. PMID: 30640787
80. Northrup H., Aronow M.E., Bebin E.M., et al. Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr Neurol. 2021; Oct; 123: 50–66. https://doi.org/10.1016/j.pediatrneurol.2021.07.011. PMID: 34399110
81. Ebrahimi-Fakhari D., Mann L.L., Poryo M., et al. Incidence of tuberous sclerosis and age at first diagnosis: new data and emerging trends from a national, prospective surveillance study. Orphanet J Rare Dis. 2018; Jul 17; 13(1): 117. https://doi.org/10.1186/s13023-018-0870-y. PMID: 30016967
82. Zöllner J.P., Franz D.N., Hertzberg C., et al A. A systematic review on the burden of illness in individuals with tuberous sclerosis complex (TSC). Orphanet J Rare Dis. 2020; Jan 21; 15(1): 23. https://doi.org/10.1186/s13023-019-1258-3. PMID: 31964424
83. Patel U., Simpson E., Kingswood J.C., Saggar-Malik A.K. Tuberose sclerosis complex: analysis of growth rates aids differ entiation of renal cell carcinoma from atypical or minimal-fat-containing angiomyolipoma. Clin Radiol. 2005; Jun; 60(6): 665–673; discussion 663664. https://doi.org/10.1016/j.crad.2005.01.009. PMID: 16038693
84. Seyam R.M., Alkhudair W.K., Kattan S.A., et al. The risks of renal angiomyolipoma: reviewing the evidence. J Kidney Cancer VHL. 2017 Oct; 16; 4(4): 13–25. https://doi.org/10.15586/jkcvhl.2017.97. PMID: 29090118
85. Bissler J.J., Kingswood J.C., Radzikowska E., et al. Everolimus long-term use in patients with tuberous sclerosis complex: Fouryear update of the EXIST-2 study. PLoS One. 2017; Aug 9; 12(8): e0180939. https://doi.org/10.1371/journal.pone.0180939. PMID: 28792952
86. Yang P., Cornejo K.M., Sadow P.M., et al. Renal cell carcinoma in tuberous sclerosis complex. Am J Surg Pathol. 2014; Jul; 38(7): 895–909. https://doi.org/10.1097/PAS.0000000000000237. PMID: 24832166
87. Kingswood J.C., Belousova E., Benedik M.P., et al. Renal angiomyolipoma in patients with tuberous sclerosis complex: findings from the TuberOus SClerosis registry to increase disease Awareness. Nephrol Dial Transplant. 2019; Mar 1; 34(3): 502– 508. https://doi.org/10.1093/ndt/gfy063. PMID: 29697822
88. Nelen M.R., Kremer H., Konings I.B., et al. Novel PTEN mutations in patients with Cowden disease: absence of clear genotypephenotype correlations. Eur J Hum Genet. 1999; Apr; 7(3): 267– 273. https://doi.org/10.1038/sj.ejhg.5200289. PMID: 10234502
89. Tan M.H., Mester J.L., Ngeow J., et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012; Jan 15; 18(2): 400–407. https://doi.org/10.1158/1078-0432.CCR11-2283. PMID: 22252256
90. Plamper M., Gohlke B., Woelfle J. PTEN hamartoma tumor syndrome in childhood and adolescence-a comprehensive review and presentation of the German pediatric guideline. Mol Cell Pediatr. 2022; Feb 21; 9(1): 3. https://doi.org/10.1186/s40348-022-00135-1. PMID: 35187600
91. Mester J.L., Zhou M., Prescott N., Eng C. Papillary renal cell carcinoma is associated with PTEN hamartoma tumor syndrome. Urology. 2012; May; 79(5): 1187.e1–7. https://doi.org/10.1016/j.urology.2011.12.025. PMID: 22381246
92. Shuch B., Ricketts C.J., Vocke C.D., et al. Germline PTEN mutation Cowden syndrome: an underappreciated form of hereditary kidney cancer. J Urol. 2013; Dec; 190(6): 1990–1998. https://doi.org/10.1016/j.juro.2013.06.012. PMID: 23764071
93. Komiya T., Blumenthal G.M., DeChowdhury R., et al. A pilot study of sirolimus in subjects with Cowden syndrome or other syndromes characterized by germline mutations in PTEN. Oncologist. 2019; Dec; 24(12): 1510–e1265. https://doi.org/10.1634/theoncologist.2019-0514. PMID: 31350329
94. Testa J.R., Cheung M., Pei J., et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011; Aug 28; 43(10): 1022–1025. https://doi.org/10.1038/ng.912. PMID: 21874000
95. Farley M.N., Schmidt L.S., Mester J.L., et al. A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol Cancer Res. 2013; Sep; 11(9): 1061–1071. https://doi.org/10.1158/1541-7786.MCR-13-0111. PMID: 23709298
96. Popova T., Hebert L., Jacquemin V., et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet. 2013; Jun 6; 92(6): 974–980. https://doi.org/10.1016/j.ajhg.2013.04.012. PMID: 23684012
97. Carbone M., Flores E.G., Emi M., et al. Combined genetic and genealogic studies uncover a large BAP1 cancer syndrome kindred tracing back nine generations to a common ancestor from the 1700s. PLoS Genet. 2015; Dec 18; 11(12): e1005633. https://doi.org/10.1371/journal.pgen.1005633. PMID: 26683624
98. Carbone M., Harbour J.W., Brugarolas J., et al. Biological mechan isms and clinical significance of BAP1 mutations in human cancer. Cancer Discov. 2020; Aug; 10(8): 1103–1120. https://doi.org/10.1158/2159-8290.CD-19-1220. PMID: 32690542
99. Walpole S., Pritchard A.L., Cebulla C.M., et al. Comprehensive study of the clinical phenotype of germline BAP1 variant-carrying families worldwide. J Natl Cancer Inst. 2018; Dec 1; 110(12): 1328–1341. https://doi.org/10.1093/jnci/djy171. PMID: 30517737
100. Gomella P.T., Linehan W.M., Ball M.W. Precision surgery and kidney cancer: knowledge of genetic alterations influences surgical management. Genes (Basel). 2021; Feb 11; 12(2): 261. https://doi.org/10.3390/genes12020261. PMID: 33670168
101. Bell H.N., Kumar-Sinha C., Mannan R., et al. Pathogenic ATM and BAP1 germline mutations in a case of early-onset, familial sarcomatoid renal cancer. Cold Spring Harb Mol Case Stud. 2022; Apr 28; 8(3): a006203. https://doi.org/10.1101/mcs.a006203. PMID: 35483881
102. Ricketts C.J., De Cubas A.A., Fan H., et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018; Apr 3; 23(1): 313–326.e5. https://doi.org/10.1016/j.celrep.2018.03.075. PMID: 29617669
103. Bertolotto C., Lesueur F., Giuliano S., et al. A SUMOylationdefective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011; Oct 19; 480(7375): 94–98. https://doi.org/10.1038/nature10539. PMID: 22012259
104. Guhan S.M., Artomov M., McCormick S., et al. Cancer risks associated with the germline MITF(E318K) variant. Sci Rep. 2020; Oct 13; 10(1): 17051. https://doi.org/10.1038/s41598-020-74237-z. PMID: 33051548
105. Yngvadottir B., Andreou A., Bassaganyas L., et al. Frequency of pathogenic germline variants in cancer susceptibility genes in 1336 renal cell carcinoma cases. Hum Mol Genet. 2022; Aug 25; 31(17): 3001–3011. https://doi.org/10.1093/hmg/ddac089. PMID: 35441217
106. Wu J., Wang H., Ricketts C.J., et al. Germline mutations of renal cancer predisposition genes and clinical relevance in Chinese patients with sporadic, early-onset disease. Cancer. 2019; Apr 1; 125(7): 1060–1069. https://doi.org/10.1002/cncr.31908. PMID: 30548481
107. Abou Alaiwi S., Nassar A.H., Adib E., et al. Trans-ethnic variation in germline variants of patients with renal cell carcinoma. Cell Rep. 2021; Mar 30; 34(13): 108926. https://doi.org/10.1016/j.celrep.2021.108926. PMID: 33789101
108. Truong H., Sheikh R., Kotecha R., et al. Germline variants identified in patients with early-onset renal cell carcinoma referred for germline genetic testing. Eur Urol Oncol. 2021; Dec; 4(6): 993–1000. https://doi.org/10.1016/j.euo.2021.09.005. PMID: 34654685
109. Smith P.S., West H., Whitworth J., et al. Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: Evidence for further locus heterogeneity. Genes Chromosomes Cancer. 2021; Jan; 60(1): 5–16. https://doi.org/10.1002/gcc.22893. PMID: 32830346
110. Sokol E.S., Pavlick D., Khiabanian H., et al. Pan-cancer analysis of BRCA1 and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity. JCO Precis Oncol. 2020; 4: 442–465. https://doi.org/10.1200/po.19.00345. Epub 2020 Apr 30. PMID: 32903788
111. Imyanitov E.N. Cytotoxic and targeted therapy for BRCA1/2driven cancers. Hered Cancer Clin Pract. 2021; Aug 28; 19(1): 36. https://doi.org/10.1186/s13053-021-00193-y. PMID: 34454564
112. Zeng C., Bastarache L.A., Tao R., et al. Association of pathogenic variants in hereditary cancer genes with multiple diseases. JAMA Oncol. 2022; Jun 1; 8(6): 835–844. https://doi.org/10.1001/jamaoncol.2022.0373. PMID: 35446370
113. Volkov N.M., Yanus G.A., Ivantsov A.O., et al. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer. Invest New Drugs. 2020; Jun; 38(3): 894–898. https://doi.org/10.1007/s10637-019-00842-z. Epub 2019 Aug 3. PMID: 31377904
114. Benusiglio P.R., Couvé S., Gilbert-Dussardier B., et al. A germline mutation in PBRM1 predisposes to renal cell carcinoma. J Med Genet. 2015; Jun; 52(6): 426–430. https://doi.org/10.1136/jmedgenet-2014-102912. PMID: 25911086
115. Jafri M., Wake N.C., Ascher D.B., et al. Germline mutations in the CDKN2B tumor suppressor gene predispose to renal cell carcinoma. Cancer Discov. 2015; Jul; 5(7): 723–729. https://doi.org/10.1158/2159-8290.CD-14-1096. PMID: 25873077
116. Andreou A., Yngvadottir B., Bassaganyas L., et al. Elongin C (ELOC/TCEB1)-associated von Hippel-Lindau disease. Hum Mol Genet. 2022; Aug 23; 31(16): 2728–2737. https://doi.org/10.1093/hmg/ddac066. PMID: 35323939
117. Purdue M.P., Song L., Scélo G., et al. Pathway analysis of renal cell carcinoma genome-wide association Studies Identifies Novel Associations. Cancer Epidemiol Biomarkers Prev. 2020; Oct; 29(10): 2065–2069. https://doi.org/10.1158/1055-9965.EPI-200472. PMID: 32732251
118. Jia G., Lu Y., Wen W., et al. Evaluating the utility of polygenic risk scores in identifying high-risk individuals for eight common cancers. JNCI Cancer Spectr. 2020; Mar 12; 4(3): pkaa021. https://doi.org/10.1093/jncics/pkaa021. PMID: 32596635
119. Tsuzuki T., Iwata H., Murase Y., et al. Renal tumors in endstage renal disease: A comprehensive review. Int J Urol. 2018; Sep; 25(9): 780–786. https://doi.org/10.1111/iju.13759. PMID: 30066367
120. Woldu S.L., Weinberg A.C., RoyChoudhury A., et al. Renal insufficiency is associated with an increased risk of papillary renal cell carcinoma histology. Int Urol Nephrol. 2014; Nov; 46(11): 2127–2132. https://doi.org/10.1007/s11255-014-0780-4. PMID: 25000896
121. Saly D.L., Eswarappa M.S., Street S.E., Deshpande P. Renal cell cancer and chronic kidney disease. Adv Chronic Kidney Dis. 2021; Sep; 28(5): 460–468.e1. https://doi.org/10.1053/j.ackd.2021.10.008. PMID: 35190112
122. Hajj P., Ferlicot S., Massoud W., et al. Prevalence of renal cell carcinoma in patients with autosomal dominant polycystic kidney disease and chronic renal failure. Urology. 2009; Sep; 74(3): 631–634. https://doi.org/10.1016/j.urology.2009.02.078. PMID: 19616833
123. Jilg C.A., Drendel V., Bacher J., et al. Autosomal dominant polycystic kidney disease: prevalence of renal neoplasias in surgical kidney specimens. Nephron Clin Pract. 2013; 123(1-2): 13–21. https://doi.org/10.1159/000351049. Epub 2013 Jun 4. PMID: 23752029
124. van de Pol J.A.A., van den Brandt P.A., Schouten L.J. Kidney stones and the risk of renal cell carcinoma and upper tract urothelial carcinoma: the Netherlands cohort study. Br J Cancer. 2019; Feb; 120(3): 368–374. https://doi.org/10.1038/s41416-018-0356-7. PMID: 30563989
125. Su Y., Hong A.L. Recent advances in renal medullary carcinoma. Int J Mol Sci. 2022; Jun 26; 23(13): 7097. https://doi.org/10.3390/ijms23137097. PMID: 35806102