Effect of non-selective NO-synthase inhibitor administered during pregnancy on the development of the cerebral cortex in 20-day-old rat pups
https://doi.org/10.47093/2218-7332.2023.14.3.37-44
摘要
Aim. To study the morphology of neurons in the cerebral cortex of rat pups on day 20 under conditions of administration of a nitric oxide synthase inhibitor (NOS) during placentation.
Materials and methods. Outbred white female rats (n = 12) were randomly divided into 2 groups of 6 rats each. On the 11th day of pregnancy, the experimental group received a single intramuscular injection of N(omega)-nitro-L-arginine methyl ester (L NAME) at a dose of 25 mg/kg, in the control group – once intramuscularly 0.9% NaCl solution. Born rat pups were randomly selected one from the mother. On the 20th day, after medical euthanasia, the brain was collected. In the anterior part of the frontal cortex, we studied the density and area of neurons, the size and shape of perikarya and the severity of their staining with toluidine blue.
Results. In the experimental group of 20-day-old rat pups, compared to the control group, the density and area of neurons were less by 10% (p > 0.05) and 22% (p > 0.05), respectively, the shape of the perikarya also changed to elongated, the elongation factor increased by 0.3 units. (p < 0.05) and there was a sixfold increase in the proportion of hyperchromic neurons (p < 0.05), hyperchromic wrinkled (p < 0.001) neurons appeared, which were absent in control animals.
Conclusion. Morphological changes in neurons of the cerebral cortex in rat pups born from females who received a NOS inhibitor during placentation may be a consequence of a decrease in the formation of nitric oxide in the neurons themselves and in the endothelium of the vessels supplying the brain
关于作者
T. Rusak白俄罗斯
N. Maksimovich
白俄罗斯
E. Bon
白俄罗斯
A. Bernatskaya
白俄罗斯
A. Kusmartseva
白俄罗斯
参考
1. Tricoire L., Vitalis T. Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Front Neural Circuits. 2012 Dec 5; 6: 82. https://doi.org/10.3389/fncir.2012.00082. PMID: 23227003; PMCID: PMC3514612
2. Dagdeviren M. Role of nitric oxide synthase in normal brain function and pathophysiology of neural diseases. Nitric oxide synthase – simple enzyme-complex roles. InTech; 2017. 248 p. https://dx.doi.org/10.5772/67267. ISBN 978-953-51-4837-1
3. Leon R.L., Mir I.N., Herrera C.L., et al. Neuroplacentology in congenital heart disease: placental connections to neurodevelopmental outcomes. Pediatr. Res. 2022. 91(4): 787–794. https://doi.org/10.1038/s41390-021-01521-7. Epub 2021 Apr 16. PMID: 33864014; PMCID: PMC9064799
4. Picón-Pagès P., Garcia-Buendia J., Muñoz F.J. Functions and dysfunctions of nitric oxide in brain. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2019; 1865(8): 1949–1967. https://doi.org/10.1016/j.bbadis.2018.11.007
5. Сидорова И.С, Никитина Н.А., Унанян А.Л., Агеев М.Б. Развитие головного мозга плода и влияние пренатальных повреждающих факторов на основные этапы нейрогенеза. Российский вестник акушера-гинеколога. 2022; 22(1): 35–44. https://doi.org/10.17116/rosakush20222201135
6. Kratimenos P., Penn A.A. Placental programming of neuropsychiatric disease. Pediatr. Res. 2019. 86(2): 157–164. https://doi.org/10.1038/s41390-019-0405-9. Epub 2019 Apr 19. PMID: 31003234
7. Dambrova M., Chlopicki S., Liepinsh E., et al. The methylester of gamma-butyrobetaine, but not gamma-butyrobetaine itself, induces muscarinic receptor-dependent vasodilatation. Naunyn Schmiedebergs Arch Pharmacol. 2004 May; 369(5): 533–539. https://doi.org/10.1007/s00210-004-0925-6. Epub 2004 Apr 2. PMID: 15060760
8. Szpera-Gozdziewicz A., Breborowicz G.H. Endothelial dysfunction in the pathogenesis of pre-eclampsia. Front. Biosci. 2014; 19(5): 734–746. https://doi.org/10.2741/4240
9. Moran M.C., Mulcahy C., Zombori G., et al. Placental volume, vasculature and calcification in pregnancies complicated by pre-eclampsia and intra-uterine growth restriction. Eur J Obstet Gynecol Reprod Biol. 2015 Dec; 195: 12–17. https://doi.org/10.1016/j.ejogrb.2015.07.023. Epub 2015 Aug 7. PMID: 26461962
10. Каптильный В.А., Рейштат Д.Ю. Преэклампсия: определение, новое в патогенезе, методические рекомендации, лечение и профилактика. Архив акушерства и гинекологии им. В.Ф. Снегирева. 2020; 7(1): 19–30. https://doi.org/10.18821/2313-8726-2020-7-1-19-30
11. Гуреев В.В., Корокин М.В., Голубев И.В. и др. Коррекция функциональных нарушений при ADMA-подобной преэклампсии производными пептида, имитирующего α-спираль B эритропоэтина. Курский научно-практический вестник «Человек и его здоровье». 2020; (2): 42–49. https://doi.org/10.21626/vestnik/2020-2/06
12. Gatford K.L., Andraweera P.H., Roberts C.T., Care A.S. Animal models of preeclampsia: causes, consequences, and interventions. Hypertension. 2020 Jun; 75(6): 1363–1381. https://doi.org/10.1161/HYPERTENSIONAHA.119.14598. Epub 2020 Apr 6. PMID: 32248704
13. Климов В.А. Эндотелий фетоплацентарного комплекса при физиологическом и патологическом течении беременности. Акушерство и гинекология. 2008; 2: 7–9
14. de Souza C.O., Peraçoli M.T.S., Weel I.C., et al. Hepatoprotective and anti-inflammatory effects of silibinin on experimental preeclampsia induced by L-NAME in rats. Life Sciences. 2012; 91(5–6): 159–165. https://doi.org/10.1016/j.lfs.2012.06.036
15. Музыко Е.А., Перфилова В.Н., Кустова М.В. Отдаленные последствия у потомства, рожденного крысами с экспериментальной преэклампсией. Медицинский вестник Северного Кавказа. 2020; 15(3): 355–359. https://doi.org/10.14300/mnnc.2020.15084
16. Lotfullina N., Khazipov R. Ethanol and the developing brain: inhibition of neuronal activity and Neuroapoptosis. Neuroscientist. 2018 Apr; 24(2): 130–141. https://doi.org/10.1177/1073858417712667. Epub 2017 Jun 5. PMID: 28580823
17. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 7th Edition, 2013. Hardback ISBN: 9780123919496. eBook ISBN: 9780124157521
18. Бонь Е.И., Максимович Н.Е., Зиматкин С.М. Морфологические изменения в теменной коре крыс после субтотальной ишемии головного мозга и на фоне введения L-NAME. Вестник ВГМУ. 2019; 18(1): 14–20. https://doi.org/10.22263/2312-4156.2019.1.14
19. Rusak T.S., Bon E.I., Maksimovich N.Ye, Martsun P.V. Effect of administration of a non-selective No Synthase inhibitor during pregnancy on cortical development in newborn rats. J Psych and Neuroche Res. 2023; 1(1): 01–03.
20. Буланов Н.М., Суворов А.Ю., Блюсс О.Б. и др. Основные принципы применения описательной статистики в медицинских исследованиях. Сеченовский вестник. 2021; 12(3): 4–16. https://doi.org/10.47093/2218-7332.2021.12.3.4-16
21. Максимович Н.Е. Понятие о нитроксидергической системе мозга (роль экстранейрональных источников). Журнал Гродненского государственного медицинского университета. 2015; 1(5): 3–5. https://journal-grsmu.by/index.php/ojs/article/view/1631
22. Baracskay P., Szepesi Z., Orbán G., et al. Generalization of seizures parallels the formation of “dark” neurons in the hippocampus and pontine reticular formation after focal-cortical application of 4-aminopyridine (4-AP) in the rat. Brain Res. 2008. 1228: 217–228. https://doi.org/10.1016/j.brainres.2008.06.044
23. Бонь Е.И., Максимович Н.Е., Зиматкин С.М. Морфологические особенности нейронов теменной коры и гиппокампа крыс после субтотальной церебральной ишемии на фоне введения омега-3 полиненасыщенных жирных кислот. Сибирский научный медицинский журнал. 2020; 40(3): 34–40. https://doi.org/10.15372/SSMJ20200305
24. Zimatkin S.M., Bon’ E.I. Dark Neurons of the brain. Neurosci Behav Physi. 2018; 48: 908–912. https://doi.org/10.1007/s11055-018-0648-7