Preview

谢切诺夫学报

高级搜索

Comparison of cuffless blood pressure measurement using an electrocardiogram monitor with photoplethysmography function with measurement by the Korotkov method: a pilot study

https://doi.org/10.47093/2218-7332.2021.12.1.39-49

摘要

The aim. To evaluate the reliability of blood pressure (BP) measurement results using a cuffless blood pressure device (CardioQVARK®) in comparison with the values obtained using the Korotkov method.

Materials and methods. An observational cross-sectional study of 50 patients (25 men, mean age 60 ± 14 years) with arterial hypertension was performed. Blood pressure was measured by the Korotkov method as a standard method, and a CardioQVARK® device, made in the form of a smartphone case, was used as a new method. The device records the electrocardiogram and the photoplethysmogram. Based on the parameters of the electrocardiogram and the photoplethysmogram the systolic and diastolic blood pressure (SBP and DBP) is calculated. Correlation analysis, Student’s t-test, Bland-Altman method were used for comparing the two methods, the standard deviation of the difference and a 95% confidence interval (95% CI) were calculated.

Results. There were no statistically significant differences in the mean values of SBP and DBP for the two methods. There was a strong direct relationship between SBP (r = 0.976, p < 0.0001) and DBP (r = 0.817, p < 0.0001), measured by two methods. Bias for SBP and DBP measured by the new method was: –0.5 mm Hg (95% CI: –1.7; 0.7) and –0.3 mmHg (95% CI: –1.4; 0.7), respectively. The difference in DBP measurements depended on the blood pressure level (r = 0.302, p = 0.03). The underestimation of DBP values was more pronounced for low blood pressure from 55 to 75 mm Hg. At the time of the study, 13 (26%) patients had an increase in blood pressure. The sensitivity of the new method in detecting arterial hypertension was 77% (95% CI: 46; 95), specificity 100% (95% CI: 91; 100), accuracy 94% (95% CI: 83; 99).

Conclusion. The blood pressure measurement method based on the analysis of the electrocardiogram and photoplethysmogram showed reliable blood pressure measurement results in comparison with the Korotkov method.

关于作者

N. Gogiberidze
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


Z. Sagirova
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


N. Kuznetsova
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


D. Gognieva
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


P. Chomakhidze
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


H. Saner
ARTORG Center for Biomedical Engineering Research, University of Bern; University Clinic for Cardiology, University Hospital Inselspital
瑞士


P. Kopylov
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


参考

1. Whelton P.K., Carey R.M. The 2017 Clinical Practice Guideline for High Blood Pressure. JAMA. 2017; 318(21): 2073–2074. https://doi.org/10.1001/jama.2017.18209 PMID: 29159375

2. McEniery C.M., Cockcroft J.R., Roman M.J., et al. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014; 35(26): 1719–1725. https://doi.org/10.1093/eurheartj/eht565 PMID: 24459197

3. Van Montfrans G.A. Oscillometric blood pressure measurement: progress and problems. Blood Pressure Monitoring. 2001; 6(6): 287–290. https://doi.org/10.1097/00126097-200112000-00004 PMID: 12055403

4. Zheng D., Di Marco L.Y., Murray A. Effect of respiration on Korotkoff sounds and oscillometric cuff pressure pulses during blood pressure measurement. Med Biol Eng Comput. 2014; 52(5): 467–473. https://doi.org/10.1007/s11517-014-1150-1 PMID: 24668326

5. Xing X., Sun M. Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomed Opt Express 2016; 7(8): 3007–3020. https://doi.org/10.1364/BOE.7.003007 PMID: 27570693

6. Yoon Y., Cho J.H., Yoon G. Non-constrained blood pressure monitoring using ECG and PPG for personal Healthcare. J Med Syst. 2009; 33(4): 261–266. https://doi.org/10.1007/s10916-008-9186-0 PMID: 19697692

7. Lin W.H., Wang H., Samuel O.W., et al. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy. Physiol. Meas. 2018; 39(2): 025005. https://doi.org/10.1088/1361-6579/aaa454 PMID: 29319536

8. Ding X.R., Zhang Y.T., Liu J., et al. Continuous cufless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Trans Biomed Eng. 2016; 63(5): 964–972. https://doi.org/10.1109/TBME.2015.2480679 PMID: 26415147

9. Gao M., Olivier N.B., Mukkamala R. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference. Physiological Rep. 2016; 4(10): e12768. https://doi.org/10.14814/phy2.12768 PMID: 27233300

10. Tang Z., Sekine M., Tamura T., et al. A chair for cuffless real-time estimation of systolic blood pressure based on pulse transit time. Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2015: 5118–5121. https://doi.org/10.1109/EMBC.2015.7319543 PMID: 26737443

11. Mukkamala R., Hahn J.O., Inan O.T., et al. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng. 2015; 62(8):1879–1901. https://doi.org/10.1109/TBME.2015.2441951 PMID: 26057530

12. Fukushima H., Kawanaka H., Bhuiyan M.S., Oguri K. Cuffless blood pressure estimation using only photoplethysmography based on cardiovascular parameters. Annu Int Conf IEEE Eng Med Biol Soc. 2013; 2013: 2132–2135. https://doi.org/10.1109/EMBC.2013.6609955 PMID: 24110142

13. Shimazaki S., Bhuiyan S., Kawanaka H., Oguri K. Features extraction for cuffless blood pressure estimation by autoencoder from photoplethysmography. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul; 2018: 2857–2860. https://doi.org/10.1109/EMBC.2018.8512829 PMID: 30440997

14. Williams B., Mancia G., Spiering W., et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018; 39(33): 3021–3104. https://doi.org/10.1093/eurheartj/ehy339 PMID: 30165516

15. Whitworth J.A., World Health Organization, International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003; 21(11):1983–1992. https://doi.org/10.1097/00004872-200311000-00002 PMID: 14597836

16. Peng X., Schultz M.G., Picone D.S., et al. Non-invasive measurement of reservoir pressure parameters from brachial-cuff blood pressure waveforms. J Clin Hypertens (Greenwich) 2018; 20(12): 1703–1711. https://doi.org/10.1111/jch.13411 PMID: 30450732

17. Matsumura K., Rolfe P., Toda S., Yamakoshi T. Cuffless blood pressure estimation using only a smartphone. Sci Rep. 2018; 8(1): 7298. https://doi.org/10.1038/s41598-018-25681-5 PMID: 29740088

18. Krisai P., Vischer A.S., Kilian L., et al. Accuracy of 24-hour ambulatory blood pressure monitoring by a novel cuffless device in clinical practice. Heart. 2019; 105(5): 399–405. https://doi.org/10.1136/heartjnl-2018-313592 PMID: 30228251

19. Islam S.M.S., Cartledge S., Karmakar C., et al. Validation and acceptability of a cuffless wrist-worn wearable blood pressure monitoring device among users and health care professionals: mixed methods study. JMIR Mhealth Uhealth. 2019; 7(10): e14706. https://doi.org/10.2196/14706 PMID: 31628788

20. Liu Z.D., Liu J.K., Wen B., et al. Cuffless blood pressure estimation using pressure pulse wave signals. Sensors. 2018; 18(12): 4227. https://doi.org/10.3390/s18124227 PMID: 30513838

21. Bard D.M., Joseph J.I., van Helmond N. Cuff-Less methods for blood pressure telemonitoring. Front Cardiovasc Med. 2019; 6: 40. https://doi.org/10.3389/fcvm.2019.00040 PMID: 31157236

22. Khalid S.G., Zhang J., Chen F., Zheng D. Blood pressure estimation using photoplethysmography only: comparison between different machine learning approaches. J Healthc Eng. 2018 Oct 23; 2018: 1548647. https://doi.org/10.1155/2018/1548647 PMID: 30425819

23. Eom H., Lee D., Han S., et al. End-to-End deep learning architecture for continuous blood pressure estimation using attention mechanism. Sensors. 2020; 20(8): 2338. https://doi.org/10.3390/s20082338 PMID: 32325970

24. Liu Z., Miao F. Wang R., et al. Cuff-less blood pressure measurement based on deep convolutional neural network. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul; 2019: 3775–3778. https://doi.org/10.1109/EMBC.2019.8856588 PMID: 31946696


补充文件

评论

浏览: 4200


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)