Preview

谢切诺夫学报

高级搜索

Age- and sex-related dynamics of structural and functional motor behavior interactions in striatum neurons in rats

https://doi.org/10.47093/2218-7332.2022.13.2.20-29

摘要

Aim. To study the age-related dynamics of structural and functional interactions of striatal neurons in the implementation of acts of motor behaviour in rats of both sexes.

Materials and methods. The study was carried out on 36 Wistar rats of both sexes aged 2, 7 and 16 months (n = 6 per group). In animals of all groups, locomotor activity was determined using a Laboras device (Metris, the Netherlands) for

15 minutes, after which the brain was sampled to determine the number and size of neurons in the striatum. The median and interquartile range of the index of motor activity and the number of neurons were determined, and to study the relationship between these indicators, a correlation and regression analysis was performed with the construction of linear and polynomial trends, and the coefficient of determination R2 was calculated.

Results. The size of neurons did not change significantly with age in the rats of both sexes. The number of neurons differed statistically in the rats of different sexes in all age groups. In male rats, the maximum number of neurons was noted at the age of 7 months with a decrease to 16 months. In female rats, the maximum number of neurons was recorded at the age of 2 months with a further decrease to 7 and 16 months. According to the regression analysis, a linear strong relationship (R2 =

0.80 for males, R2 = 0.79 for females) was established between the number of neurons in the striatum and motor activity in 2-month-old animals. At the age of 7 and 16 months the relationship is non-linear.

Conclusion. The number of neurons in the striatum is subject to sex and age dynamics, while their size remains unchanged from 2 to 16 months. For animals of both sexes, a decrease in the role of the striatum in providing motor activity in the process of growing up was noted. This relationship reaches its maximum in 2-month-old rats and then decreases.

关于作者

V. Kudryavtseva
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


A. Moiseeva
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


S. Mukhamedova
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


G. Piavchenko
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


S. Kuznetsov
Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦


参考

1. Maciejewska B., Lipowska M., Kowiański P., et al. Postnatal development of the rat striatum – a study using in situ DNA end labeling technique. Acta Neurobiol Exp (Wars). 1998; 58(1): 23–28. PMID: 9583184.

2. The Rat Nervous System – 4th Edition. Edited by George Paxinos. Academic Press 2014. 1052 p. eBook ISBN: 9780080921372.

3. Автандилов Г.Г. Медицинская морфометрия. Руководство. М.: Медицина, 1990. 384 с. ISBN 5-225-00753-8.

4. Bachdasarian L., Bulthuis R., Molewijk E., et al. Enhanced technologies and integration parameters of pre-clinical studies. Journal Biomed. 2013; 1(1): 83–97.

5. Пьявченко Г.А., Алексеев А.Г., Серегина Е.С. и др. Оценка токсического действия сукцината цинка на кору больших полушарий головного мозга крыс. Сеченовский вестник. 2019; 10(2): 29–35. https://doi.org/10.26442/22187332.2019.2.29-35

6. Хожай Л.И., Отеллин В.А. Распределение ГАМКергических нейронов в неокортексе крыс в отдаленные постнатальные сроки после перинатальной гипоксии. Журнал эволюционной биохимии и физиологии. 2019, 55(4): 302–304. https://doi.org/10.1134/S0044452919040077

7. Кириченко Е.Ю., Логвинов А.К., Повилайтите П.Е., Гранкина А.О. Распределение нейрональных и глиальных антигенов в колонках соматосенсорной коры мозга крысы (иммуногистохимическое исследование). Морфология. 2014, 145(2): 7–11. PMID: 25282817.

8. Рыжавский Б.Я., Литвинцева Е.М., Ткач О.В., Рудман Ю.Ю. Возрастная динамика морфометрических и гистохимических показателей развития коры головного мозга крыс. Дальневосточный Медицинский Журнал. 2014, 4: 82–84.

9. Paxinos G., Watson Ch. The rat brain in stereotaxic coordinates. 7th Edition. Academic Press. 2013. 480 p. eBook ISBN: 9780124157521.

10. Antonazzo M., Gomez-Urquijo S. M., Ugedo L., Morera-Herreras T. Dopaminergic Denervation impairs cortical motor and associative/limbic information processing through the basal ganglia and its modulation by the CB1 receptor. Neurobiol Dis 2021 Jan; 148: 105214. https://doi.org/10.1016/j.nbd.2020.105214. PMID: 33278598.

11. Moënne-Loccoz C., Astudillo-Valenzuela C., Skovgård K., et al. Cortico-striatal oscillations are correlated to motor activity levels in both physiological and parkinsonian conditions. Front Syst Neurosci. 2020 Aug 13; 14: 56. https://doi.org/10.3389/fnsys.2020.00056. PMID: 32903888.

12. Sjöbom J., Tamtè M., Halje P., et al. Cortical and striatal circuits together encode transitions in natural behavior. Sci Adv. 2020 Oct 9; 6(41): eabc1173. https://doi.org/10.1126/sciadv.abc1173. PMID: 33036974.

13. Lemke S.M., Ramanathan D.S., Guo L., et al. Emergent modular neural control drives coordinated motor actions. Nat Neurosci. 2019 Jul; 22(7): 1122–1131. https://doi.org/10.1038/s41593-019-0407-2. Epub 2019 May 27. PMID: 31133689.

14. Monko M. E., Heilbronner S. R. Retrosplenial cortical connectivity with frontal basal ganglia networks. 2021 Mar 3: 1–10. https://doi.org/10.1162/jocn_a_01699. Epub ahead of print. PMID: 33656393.

15. Breu M., Reisinger D., Tao L., et al. In vivo high-resolution diffusion tensor imaging of the developing neonatal rat cortex and its relationship to glial and dendritic maturation. Brain Struct Funct. 2019 Jun; 224(5): 1815–1829. https://doi.org/10.1007/s00429-019-01878-w. Epub 2019 Apr 22. PMID: 31011813.

16. van Bodegom M., Homberg J.R., Henckens M.J.A.G. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front Cell Neurosci. 2017 Apr 19; 11: 87. https://doi.org/10.3389/fncel.2017.00087. PMID: 28469557.

17. Cox J., Witten I.B. Striatal circuits for reward learning and decision-making. Nat Rev Neurosci. 2019 Aug; 20(8): 482–494. https://doi.org/10.1038/s41583-019-0189-2

18. Hori Y., Ihara N., Sugai C., et al. Ventral Striatum Links Motivational and Motor Networks during Operant-Conditioned Movement in Rats. Neuroimage. 2019 Jan 1; 184: 943–953. https://doi.org/10.1016/j.neuroimage.2018.10.018. Epub 2018 Oct 5. PMID: 30296556.

19. Dhawale A.K., Wolff S.B.E., Ko R., Ölveczky B.P. The basal ganglia control the detailed kinematics of learned motor skills. Nat Neurosci. 2021 Sep; 24(9): 1256–1269. https://doi.org/10.1038/s41593-021-00889-3. Epub 2021 Jul 15. PMID: 34267392.

20. Stubbendorff C., Molano-Mazon M., Young A.M. J., Gerdjikov T.V. Synchronization in the prefrontal-striatal circuit tracks behavioural choice in a go-no-go task in rats. Eur J Neurosci. 2019 Mar; 49(5): 701–711. https://doi.org/10.1111/ejn.13905. Epub 2018 Apr 2. PMID: 29520856.

21. Mehlman M.L., Winter S.S., Taube J.S. Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. II. Neuroanatomical Studies. J Neurophysiol. 2019 Feb 1; 121(2): 371–395. https://doi.org/10.1152/jn.00144.2018. Epub 2018 Nov 14. PMID: 30427743.

22. Markham J.A., Greenough W.T. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 2004 Nov; 1(4): 351–363. https://doi.org/10.1017/s1740925x05000219 PMID: 16921405.

23. Ortiz-Pulido R., Hernández-Briones Z.S., Tamariz-Rodríguez A., et al. Effect of electrolytic lesion of the dorsomedial striatum on sexual behaviour and locomotor activity in rats. Neurologia. 2017 Jun; 32(5): 278–283. English, Spanish. https://doi.org/10.1016/j.nrl.2015.11.007. Epub 2016 Jan 13. PMID: 26774412.

24. Hintzen A., Pelzer E.A., Tittgemeyer M. Thalamic interactions of cerebellum and basal ganglia. 2018 Mar; 223(2): 569–587. https://doi.org/10.1007/s00429-017-1584-y. Epub 2017 Dec 9. PMID: 29224175.

25. Pimentel-Farfan A.K., Báez-Cordero A.S., Peña-Rangel T.M., Rueda-Orozco P.E. Cortico-striatal circuits for bilaterally coordinated movements. Sci Adv. 2022 Mar 4; 8(9): eabk2241. https://doi.org/10.1126/sciadv.abk2241. Epub 2022 Mar 4. PMID: 35245127.

26. Balsters J.H., Zerbi V., Sallet J., et al. Primate homologs of mouse cortico-striatal circuits. Elife. 2020 Apr 16; 9: e53680. https://doi.org/10.7554/eLife.53680. PMID: 32298231.

27. Sippy T., Lapray D., Crochet S., Petersen C.C.H. Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior. Neuron. 2015 Oct 21; 88(2): 298–305. https://doi.org/10.1016/j.neuron.2015.08.039. Epub 2015 Oct 1. PMID: 2643952.

28. Ghosal S., Packard A.E.B., Mahbod P., et al. Disruption of glucagon-like peptide 1 signaling in Sim1 neurons reduces physiological and behavioral reactivity to acute and chronic stress. J Neurosci. 2017 Jan 4; 37(1): 184–193. https://doi.org/10.1523/JNEUROSCI.1104-16.2016. PMID: 28053040.

29. Jun J.J., Steinmetz N.A., Siegle J.H., et al. Fully Integrated silicon probes for high-density recording of neural activity. Nature. 2017 Nov 8; 551(7679): 232–236. https://doi.org/10.1038/nature24636. PMID: 29120427.

30. Su W., Li K., Li C.M., et al. Motor Symptom Lateralization influences cortico-striatal functional connectivity in Parkinson’s disease. Front Neurol. 2021 May 14; 12: 619631. https://doi.org/10.3389/fneur.2021.619631. PMID: 34054684.

31. Moënne-Loccoz C., Astudillo-Valenzuela C., Skovgård K., et al. Cortico-striatal oscillations are correlated to motor activity levels in both physiological and Parkinsonian conditions. Front Syst Neurosci. 2020 Aug 13; 14: 56. https://doi.org/10.3389/fnsys.2020.00056. PMID: 32903888.

32. P’yavchenko G.A., Shmarkova L.I., Nozdrin V.I. Changes in the number of neurons in the rat motor cortex and movement activity with age. Neurosci Behav Physi 2016, 46, 270–273. https://doi.org/10.1007/s11055-016-0228-7

33. Mengler L., Khmelinskii A., Diedenhofen M., et al. Brain Maturation of the adolescent rat cortex and striatum: changes in volume and myelination. Neuroimage. 2014 Jan 1; 84: 35–44. https://doi.org/10.1016/j.neuroimage.2013.08.034. Epub 2013 Aug 27. PMID: 23994458.

34. Piavchenko G., Soldatov V., Venediktov A., et al. A combined use of silver pretreatment and impregnation with consequent Nissl staining for cortex and striatum architectonics study. Front. Neuroanat. 2022, 16: 940993. https://doi.org/10.3389/fnana.2022.940993

35. Delaville C., Cruz A.V., McCoy A.J., et al. Oscillatory activity in basal ganglia and motor cortex in an awake behaving rodent model of Parkinson’s disease. Basal Ganglia. 2014 Apr 1; 3(4): 221–227. https://doi.org/10.1016/j.baga.2013.12.001. PMID: 25667820.


补充文件

1. The ARRIVE guidelines 2.0: author checklist
主题
类型 Исследовательские инструменты
下载 (102KB)    
索引源数据 ▾

评论

浏览: 814


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)