Preview

谢切诺夫学报

高级搜索

Age-dependent patterns of somatostatinergic neurons in sympathetic paravertebral ganglia

https://doi.org/10.47093/2218-7332.2023.14.3.28-36

摘要

Aim. We aimed to determine the content of neurons expressing somatostatin (SST) and their colocalization with  cells expressing tyrosine hydroxylase (TH) and neuropeptide Y (NPY) in the cranial cervical ganglion (CCG) and celiac  plexus in rats.

  Material and methods. We used 30 white male Wistar rats of six age groups (5 rats per group): newborn pups, 10-,  20-, 30-, and 60-day-old pups, and 24-month-old pups. We incubated their ganglia sections with primary antibodies  against SST, NPY, and TH, as well as with secondary antibodies conjugated with fluorochromes. We evaluated the  ratio between immunoreactive (IR) neurons with a visible nucleolus and excessive fluorescence and the total number  of neurons, as well as the average cross-sectional area, by ImageJ software (NIH, USA).

Results. SST-IR neurons were not found in the CCG. However, the immunoreaction (as granules) was revealed in  most perikaryons at the celiac plexus for SST and NPY with a rather homogeneous distribution for TH. The ratio of  ST-IR neurons reached 33% in pups, doubled during the first month of life, and then remained constant (70–73%).  No statistically significant differences were found between the ratios of SST-IR neurons of the cranial mesenteric  ganglion (CMG) and celiac ganglion (CG) for all age groups. From the moment of birth to 60 days of life, the  average cross-sectional area of SST-IR neurons in the CG and CMG increased by 3.4–3.9 times and then did not  change until 24 months. From the 20th day of life, the average cross-sectional area of SST-IR neurons in the CG  was significantly higher than that in the CMG. All SST-IR neurons in all age groups expressed TH, while 90–94% of  neurons expressed NPY.

 Conclusions. The content of ST-IR neurons in different sympathetic nodes is not the same: they are absent in the  CCG, and their ratio and area in the celiac plexus increase during early postnatal development. This may be due to  the peculiarities of innervated target organs.  

关于作者

A. Emanuilov
Yaroslavl State Medical Univesity
俄罗斯联邦


V. Porseva
Yaroslavl State Medical Univesity
俄罗斯联邦


A. Pavlov
Yaroslavl State Medical Univesity
俄罗斯联邦


P. Masliukov
Yaroslavl State Medical Univesity
俄罗斯联邦


参考

1. Kumar U., Singh S. Role of somatostatin in the regulation of central and peripheral factors of satiety and obesity. Int J Mol Sci. 2020; 21(7): 2568. https://doi.org/10.3390/ijms21072568

2. Günther T., Tulipano G., Dournaud P., et al. International union of basic and clinical pharmacology. CV. Somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacol Rev. 2018; 70: 763–835. https://doi.org/10.1124/pr.117.015388

3. Ampofo E., Nalbach L., Menger M.D., Laschke M.W. Regulatory mechanisms of somatostatin expression. Int J Mol Sci. 2020; 21(11): 4170. https://doi.org/10.3390/ijms21114170

4. Singh S., Somvanshi R.K., Kumar U. Somatostatin-mediated regulation of retinoic acid-induced differentiation of SHSY5Y cells: neurotransmitters phenotype characterization. Biomedicines. 2022; 10(2): 337. https://doi.org/10.3390/biomedicines10020337

5. Ernsberger U., Deller T., Rohrer H. The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res. 2020; 382(2): 201–231. https://doi.org/10.1007/s00441-020-03279-6

6. Palus K., Bulc M., Czajkowska M., et al. Neurochemical characteristics of calbindin-like immunoreactive coeliac-cranial mesenteric ganglion complex (CCMG) neurons supplying the pre-pyloric region of the porcine stomach. Tissue Cell. 2018; 50: 8–14. https://doi.org/10.1016/j.tice.2017.12.002

7. Furness J.B., Di Natale M., Hunne B., et al. The identification of neuronal control pathways supplying effector tissues in the stomach. Cell Tissue Res. 2020; 382(3): 433–445. https://doi.org/10.1007/s00441-020-03294-7

8. Masliukov P.M., Emanuilov A.I., Budnik A.F. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat Rec (Hoboken). 2022; 306 (9): 2249–2263. https://doi.org/10.1002/ar.25015

9. Маслюков П.М., Емануйлов А.И., Ноздрачёв А.Д. Возрастные изменения нейротрансмиттерного состава нейронов симпатических узлов. Успехи геронтологии. 2016; 29(3): 442–453. PMID: 28525692

10. Ernsberger U., Deller T., Rohrer H. The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system. Cell Tissue Res. 2021. 386(3): 455–475. https://doi.org/10.1007/s00441-021-03548-y

11. Huang T., Hu J., Wang B., et al. Tlx3 controls cholinergic transmitter and Peptide phenotypes in a subset of prenatal sympathetic neurons. J Neurosci. 2013; 33(26): 10667–10675. https://doi.org/10.1523/JNEUROSCI.0192-13.2013. PMID: 23804090

12. Anderson R.L., Morris J.L., Gibbins I.L. Neurochemical differentiation of functionally distinct populations of autonomic neurons. J Comp Neurol. 2001. 429(3): 419–435. https://doi.org/10.1002/1096-9861(20010115)429:3<419::aidcne5>3.0.co;2-d. PMID: 11116229

13. Kaestner C.L., Smith E.H., Peirce S.G., Hoover D.B. Immunohistochemical analysis of the mouse celiac ganglion: An integrative relay station of the peripheral nervous system. J Comp Neurol. 2019; 527(16): 2742–2760. https://doi.org/10.1002/cne.24705

14. Szurszewski J.H., Linden D.R. Physiology of prevertebral sympathetic ganglia in: physiology of the gastrointestinal tract (Johnson L.R., ed). San Diego: Academic Press, 2012. P 583– 627. ISBN 9780123820266. https://doi.org/10.1016/B978-0-12-382026-6.00020-8

15. Furness J.B. Integrated neural and endocrine control of gastrointestinal function. Adv Exp Med Biol. 2016; 891: 159–173. https://doi.org/10.1007/978-3-319-27592-5_16

16. Martinez-Sanchez N., Sweeney O., Sidarta-Oliveira D., et al. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron. 2022; 110(21): 3597–3626. https://doi.org/10.1016/j.neuron.2022.10.017

17. Li Y.L. Stellate Ganglia and cardiac sympathetic overactivation in heart failure. Int J Mol Sci. 2022; 23(21): 13311. https://doi.org/10.3390/ijms232113311

18. Емануйлов А.И. Маслюков П.М., Ноздрачев А.Д. Симпатическая иннервация сердца в раннем постнатальном онтогенезе. Российский физиологический журнал им. И.М. Сеченова. 2019; 105(9): 1133–1141. https://doi.org/10.1134/S086981391909005X

19. Vishnyakova P.A., Moiseev K.Y., Porseva V.V., et al. Somatostatinexpressing neurons in the tuberal region of rat hypothalamus during aging. J Evol Biochem Phys 2021; 57: 1480–1489. https://doi.org/10.1134/S0022093021060247

20. Lomax A.E., Sharkey K.A., Furness J.B. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil. 2010; 22(1): 7–18. https://doi.org/10.1111/j.1365-2982.2009.01381.x

21. Palus K., Bulc M., Całka J. Changes in somatostatin-like immunoreactivity in the sympathetic neurons projecting to the prepyloric area of the porcine stomach induced by selected pathological conditions. Biomed Res Int. 2017: 9037476. https://doi.org/10.1155/2017/9037476

22. Van Op den Bosch J., Adriaensen D., Van Nassauw L., Timmermans J.P. The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract: a review. Regul Pept. 2009; 156(1–3): 1–8. https://doi.org/10.1016/j.regpep.2009.04.003

23. Gonkowski S., Rytel L. Somatostatin as an active substance in the mammalian enteric nervous system. Int J Mol Sci. 2019; 20(18): 4461. https://doi.org/10.3390/ijms20184461. PMID: 31510021

24. Ameri P., Ferone D. Diffuse endocrine system, neuroendocrine tumors and immunity: what’s new? Neuroendocrinology. 2012; 95(4): 267–276. https://doi.org/10.1159/000334612


补充文件

1. The ARRIVE guidelines 2.0: author checklist
主题
类型 其他
下载 (115KB)    
索引源数据 ▾

评论

浏览: 685


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)