Preview

Sechenov Medical Journal

Advanced search

Compensated advanced chronic liver disease in patients with metabolic dysfunction-associated steatotic liver disease: association with cardiometabolic factors

https://doi.org/10.47093/2218-7332.2024.1075.16

Abstract

Aim. Тo study cardiometabolic factors and the PNPLA3 I148M (rs738409 C>G) gene polymorphism in association with the compensated advanced chronic liver disease (cACLD) in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).

Materials and methods. А retrospective cross-sectional study was conducted. The total of 108 patients with MASLD (33 men and 75 women aged 28 to 89 years) involved were divided into two groups based on results of transient elastography: group 1 – with the presence of cACLD (liver stiffness ≥ 8.0 kPa) – 18 patients and group 2 – without cACLD (<8.0 kPa) – 90 patients. Cardiometabolic risk factors and the PNPLA3 I148M (rs738409 C>G) gene polymorphism were studied in both groups. Odds ratios (OR) and 95% confidence intervals (CI) were calculated, and a logistic regression model was constructed for the detection of cACLD.

Results. Compared to group 2, patients with cACLD had statistically significant higher prevalence of: arterial hypertension (p < 0.05), type 2 diabetes mellitus (p < 0.01), obesity (p < 0.05), dyslipidemia (p < 0.05), and PNPLA3 gene polymorphism (p < 0.05). The OR for cACLD in individuals with arterial hypertension was 5.58 (95% CI: 1.21–25.71; p < 0.05), with type 2 diabetes mellitus – 4.58 (95% CI: 1.59–13.21; p < 0.01), with obesity – 3.83 (95% CI: 1.17–12.52; p < 0.05), with dyslipidemia – 6.12 (95% CI: 1.33–28.20; p < 0.05), in the presence of a polymorphic variant of the PNPLA3 gene in a hetero or homozygous state – 3.9 (95% CI: 1.28–11.89; p < 0.05). The binary logistic regression model for detecting cACLD included type 2 diabetes mellitus, dyslipidemia, and waist circumference. The area under the ROC curve was 0.81 (95% CI: 0.70–0.92), sensitivity was 72.2%, specificity was 74.4%, and accuracy was 84.3%.

Conclusion. Type 2 diabetes mellitus, dyslipidemia, and waist circumference are the determining factors for the development of cACLD in patients with MASLD. The PNPLA3 I148M gene polymorphism does not play a leading role in the development of progressive MASLD in the study cohort.

About the Authors

V. P. Gomonova
St. Petersburg University
Russian Federation

Veronika P. Gomonova - Research Assistant, Clinical Research and Education Centre for Gastroenterology and Hepatology.

7–9, Universitetskaya Embankment, Saint Petersburg, 199034



K. L. Raikhelson
St. Petersburg University
Russian Federation

Karina L. Raikhelson - Dr. of Sci. (Medicine), Professor, Clinical Research and Education Centre for Gastroenterology and Hepatology.

7–9, Universitetskaya Embankment, Saint Petersburg, 199034



E. V. Pazenko
St. Petersburg University
Russian Federation

Ekaterina V. Pazenko - Cand. of Sci. (Medicine), Junior Researcher, Clinical Research and Education Centre for Gastroenterology and Hepatology.

7–9, Universitetskaya Embankment, Saint Petersburg, 199034



M. K. Prashnova
St. Petersburg University
Russian Federation

Maria K. Prashnova - Cand. of Sci. (Medicine), Associate Professor, Clinical Research and Education Centre for Gastroenterology and Hepatology.

7–9, Universitetskaya Embankment, Saint Petersburg, 199034



S. V. Lapin
Pavlov First Saint Petersburg State Medical University
Russian Federation

Sergey V. Lapin - Cand. of Sci. (Medicine), Head of the Laboratory of Diagnostics of Autoimmune Diseases, Scientific and Methodological Center of the Ministry of Health of the Russian Federation for Molecular Medicine.

6–8, L’va Tolstogo str., Saint Petersburg, 197022



V. D. Nazarov
Pavlov First Saint Petersburg State Medical University
Russian Federation

Vladimir D. Nazarov - Cand. of Sci. (Medicine), Junior Researcher, Laboratory of Diagnostics of Autoimmune Diseases, Scientific and Methodological Center of the Ministry of Health of the Russian Federation for Molecular Medicine.

6–8, L’va Tolstogo str., Saint Petersburg, 197022



D. V. Sidorenko
Pavlov First Saint Petersburg State Medical University
Russian Federation

Darya V. Sidorenko - Laboratory Geneticist, Laboratory of Diagnostics of Autoimmune Diseases, Scientific and Metho­dological Center of the Ministry of Health of the Russian Federation for Molecular Medicine.

6–8, L’va Tolstogo str., Saint Petersburg, 197022



References

1. Nassir F. NAFLD: Mechanisms, treatments, and biomarkers. Biomolecules. 2022; 12(6): 824. https://doi.org/10.3390/biom12060824. PMID: 35740949

2. Riazi K., Azhari H., Charette J.H., et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022 Sep; 7(9): 851–861. https://doi.org/10.1016/S2468-1253(22)00165-0. Epub 2022 Jul 5. PMID: 35798021

3. Younossi Z.M., Golabi P., Paik J.M., et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatol. 2023; 77(4): 1335–1347. https://doi.org/10.1097/HEP.0000000000000004. Epub 2023 Jan 3. PMID: 36626630

4. Maev I.V., Andreev D.N., Kucheryavyy Yu.A. Prevalence of non-alcoholic fat disease liver in Russian Federation: meta-analysis. Consilium Medicum. 2023; 25(5): 313–319 (In Russian). https://doi.org/10.26442/20751753.2023.5.202155. EDN: BNGAZT

5. Rinella M.E., Lazarus J.V., Ratziu V., et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023 Dec 1; 78(6): 1966–1986. https://doi.org/10.1097/HEP.0000000000000520. Epub 2023 Jun 24. PMID: 37363821

6. Raikhelson K.L., Maevskaia M.V., Zharkova M.S., et al. Fatty liver disease: new nomenclature and it’s adaptation in the Russian Federation. Russian Journal of Gastroenterology, Hepatology, Coloproctology.2024; 34(2): 35–44 (In Russian). https://doi.org/10.22416/1382-4376-2024-961. EDN: RVLEHF

7. Mundi M.S., Velapati S., Patel J., et al. Evolution of NAFLD and its management. Nutr Clin Pract. 2020; 35(1): 72–84. https://doi.org/10.1002/ncp.10449. Epub 2019 Dec 16. PMID: 31840865

8. Sanyal A.J., Castera L., Wong V.W. Noninvasive assessment of liver fibrosis in NAFLD. Clin Gastroenterol Hepatol. 2023 Jul; 21(8): 2026–2039. https://doi.org/10.1016/j.cgh.2023.03.042. Epub 2023 Apr 14. Erratum in: Clin Gastroenterol Hepatol. 2024 Mar; 22(3): 676. https://doi.org/10.1016/j.cgh.2023.12.014. PMID: 37062495

9. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; Clinical Practice Guideline Panel; Chair; EASL Governing Board representative; Panel members. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis – 2021 update. J Hepatol. 2021 Sep; 75(3): 659–689. https://doi.org/10.1016/j.jhep.2021.05.025. Epub 2021 Jun 21. PMID: 34166721

10. Shiha G., Ibrahim A., Helmy A., et al. Asian-Pacific Association for the Study of the Liver (APASL) consensus guidelines on invasive and non-invasive assessment of hepatic fibrosis: a 2016 update. Hepatol Int. 2017 Jan; 11(1): 1–30. https://doi.org/10.1007/s12072-016-9760-3. Epub 2016 Oct 6. PMID: 27714681

11. Sterling R.K., Duarte-Rojo A., Patel K., et al. AASLD Practice Guideline on imaging-based non-invasive liver disease assessments of hepatic fibrosis and steatosis. Hepatology. 2024 Mar 15. https://doi.org/10.1097/HEP.0000000000000843. Epub ahead of print. PMID: 38489518

12. de Franchis R. Baveno VI Faculty. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015 Sep; 63(3): 743–752. https://doi.org/10.1016/j.jhep.2015.05.022. Epub 2015 Jun 3. PMID: 26047908

13. de Franchis R., Bosch J., Garcia-Tsao G., et al. Baveno VII Faculty. Baveno VII – Renewing consensus in portal hypertension. J Hepatol. 2022 Apr; 76(4): 959–974. https://doi.org/10.1016/j.jhep.2021.12.022. Epub 2021 Dec 30. Erratum in: J Hepatol. 2022 Jul; 77(1): 271. https://doi.org/10.1016/j.jhep.2022.03.024. PMID: 35120736

14. Papatheodoridi M., Hiriart J.B., Lupsor-Platon M., et al. Refining the Baveno VI elastography criteria for the definition of compensated advanced chronic liver disease. J Hepatol. 2021; 74(5): 1109–1116. https://doi.org/10.1016/j.jhep.2020.11.050. Epub 2020 Dec 9. PMID: 33307138

15. Ivashkin V.T., Maevskaya M.V., Zharkova M.S., et al. Clinical Practice Guidelines of the Russian Scientific Liver Society, Russian Gastroenterological Association, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians and National Society for Preventive Cardiology on Diagnosis and Treatment of Non-Alcoholic Liver Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022; 32(4): 104–140 (In Russian). https://doi.org/10.22416/1382-4376-2022-32-4-104-140. EDN: EXTLXM

16. Calzadilla B.L., Adams L.A. The natural course of non-alcoholic fatty liver disease. Int J Mol Sci. 2016; 17(5): 774. https://doi.org/10.3390/ijms17050774. PMID: 27213358

17. Carlsson B., Lindén D., Brolén G., et al. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2020; 51(12): 1305–1320. https://doi.org/10.1111/apt.15738. Epub 2020 May 7. PMID: 32383295

18. Kurtanov K.H., Sydykova L.A., Pavlova N.I., et al. Polymorphism of the adiponutrin gene (PNPLA3) in indigenous residents of the Republic of Sakha (Yakutia) suffering from type 2 diabetes mellitus. Almanac of Clinical Medicine. 2018; 46(3): 258–263 (In Russian). https://doi.org/10.18786/2072-0505-2018-46-3-258-263. EDN: XULSWT

19. Krolevets T.S., Livzan M.A., Akhmedov V.A., Novikov D.G. Study of PNPLA3 gene polymorphism in patients with non-alcoholic fatty liver disease and various stages of fibrosis. Experimental and Clinical Gastroenterology. 2018; 159(11): 24–32 (In Russian). EDN: YDNUBU

20. Raikhelson K.L., Kovyazina V.P., Sidorenko D.V., et al. PNPLA gene polymorphism impact on the nonalcoholic fatty liver disease course. RMJ. 2019; 12: 85–88 (In Russian). EDN: AOMSJO

21. Peck-Radosavljevic M. Thrombocytopenia in chronic liver disease. Liver Int. 2017; 37(6): 778–793. https://doi.org/10.1111/liv.13317. Epub 2016 Dec 27. PMID: 27860293

22. Kanwal F., Kramer J.R., Li L., et al. Effect of metabolic traits on the risk of cirrhosis and hepatocellular cancer in nonalcoholic fatty liver disease. Hepatology. 2020; 71(3): 808–819. https://doi.org/10.1002/hep.31014. Epub 2020 Feb 26. PMID: 31675427

23. Méndez-Sánchez N., Cerda-Reyes E., Higuera-de-la-Tijera F., et al. Dyslipidemia as a risk factor for liver fibrosis progression in a multicentric population with non-alcoholic steatohepatitis. F1000Res. 2020 Jan 28; 9: 56. https://doi.org/10.12688/f1000research.21918.1. PMID: 32595949

24. Nderitu P., Bosco C., Garmo H., et al. The association between individual metabolic syndrome components, primary liver cancer and cirrhosis: A study in the Swedish AMORIS cohort. Int J Cancer. 2017; 141(6): 1148–1160. https://doi.org/10.1002/ijc.30818. Epub 2017 Jun 21. PMID: 28577304

25. Alexander M., Loomis A.K., van der Lei J., et al. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts. BMC Med. 2019; 17(1): 95. https://doi.org/10.1186/s12916-019-1321-x. PMID: 31104631

26. Unalp-Arida A., Ruhl C.E. Patatin-like phospholipase domain-containing protein 3 I148M and liver fat and fibrosis scores predict liver disease mortality in the U.S. population. Hepatology. 2020; 71(3): 820–834. https://doi.org/10.1002/hep.31032. Epub 2020 Mar 5. PMID: 31705824

27. Sterling R.K., Lissen E., Clumeck N., et al. Development of a simple noninvasive index to predict significant fibrosis patients with HIV/HCV co-infection. Hepatology. 2006; 43: 1317–1325. https://doi.org/10.1002/hep.21178. PMID: 16729309

28. Xu R., Tao A., Zhang S., et al. Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis. Sci Rep. 2015; 5: 9284. https://doi.org/10.1038/srep09284. PMID: 25791171

29. Dai G., Liu P., Li X., et al. Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease (NAFLD) susceptibility and severity: A meta-analysis. Medicine (Baltimore). 2019; 98(7): e14324. https://doi.org/10.1097/MD.0000000000014324. PMID: 30762732

30. Angulo P., Hui J.M., Marchesini G., et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007; 45: 846–854. https://doi.org/10.1002/hep.21496. PMID: 17393509


Supplementary files

1. Table. Cardiometabolic risk factors
Subject
Type Исследовательские инструменты
Download (715KB)    
Indexing metadata ▾
2. STROBE Statement—Checklist
Subject
Type Исследовательские инструменты
Download (210KB)    
Indexing metadata ▾

Review

Views: 699


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2218-7332 (Print)
ISSN 2658-3348 (Online)